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ABSTRACT

In this report we summarize the results of a cooperative-research-and-development-agreement
(CRADA) project, the main objective of which was the development of a computational model of
precipitation from a supersaturated alloy solid solution. The model is based upon the formalism of
chemical-reaction-rate theory, combined with classical descriptions of precipitate thermodynamic
properties and a mean-field treatment of diffusion-limited growth and coarsening. For the specific
case of precipitation of A13SCin supersaturated AI-SC alloys, we demonstrate how the
computational model can be employed in order to calculate number densities and size distributions
of precipitates as a function of aging time and temperature, including the effects of continuous
cooling and thermally generated point defects. The application of our model to a specific alloy
system requires the knowledge of diffusion data, point defect energetic, and thermodynamic
properties for bulk phases and interphase interfaces. For interfaces and point defects
thermodynamic data can be difficult to measure experimentally and reliable values of defect free
energies are often unavailable. For this reason part of our efforts in the CRADA project were
devoted to applying semiempirical and first-principles atomistic techniques to the calculation of
interracial and point-defect thermodynamic properties. In this report applications are discussed for
interphase interfaces in the A1-Ag, Al-Se and A1-Li alloy systems. We also describe atomistic
work aimed at understanding the energetic of vacancy clusters in Al. These clusters serve as
sinks for isolated vacancies during aging and their growth can lead to more complex defects, such
as dislocation loops, that act as heterogeneous nucleation sites.
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MODELING OF PRECIPITATION IN AI ALLOYS

I. Summary

In this section an overall summary is given describing the CRADA project and its two main
components: the rate-theory-based approach for modeling precipitation kinetics, and the atomistic
methods for calculating thermodynamic properties. This section is followed by four others which
give details of the computational methods and which contain results for specific applications.

Overview of CRADA Project

In Figure 1 a flow chart is shown which illustrates schematically the goals and different approaches
involved in the CRADA project. The main goal of the project was to provide microstructural
information which could be used in continuum models of mechanical properties in Al alloys.
Specifically, the aim was to calculate precipitate size distributions as a function of chemical
composition and thermal history. The microstructural information was calculated using a kinetic
modeling code based upon chemical reaction-rate theory [1]. The theory provides a formalism for
treating nucleation, growth and coarsening within a single, unified framework, and it is felxible
enough to treat multiple phases and solute species. The input to the rate-theory computer code
consists of a variety of thermochemical data including diffusion constants, elastic constants, bulk.
and interphase interracial thermodynamic properties and point-defect energetic. Where they are
available, the values of these parameters are taken from the Alcoa experimental database. In some
cases, reliable values of important thermochemical parameters are unavailable. In these situations.
atornistic computational techniques provide valuable tools which can be used to calculate relevant
properties. Our efforts in the CRADA project were divided into two areas: development and
coding of the rate-theory for modeling precipitation kinetics, and application of atomistic
techniques to the calculation of alloy thermodynamic properties and defect energetic.

Accomplishments

At present we have succeeded in developing a rate-theory model applicable to the kinetics of
coherent, homogeneously-nucleated precipitates in a binary alloy. In the next section details of our
model are given and results are presented for the application of Al~Sc precipitation in
supersaturated, Al-rich, AI-SC alloys. The text of the next section is taken from Reference [2].

The results presented below for Al-Se demonstrate the ability of the rate-theory model to describe
simultaneously nucleation, growth, and size-coarsening kinetics. Additionally it is discussed
below how the model can be used to study the ways in which transformation kinetics are affected
by varied thermal processing paths and atomic-assembly mechanisms. A copy of the code used in
the A1-SCsimulations is given at the end of the report in the Appendix.

In parallel with the rate-theory modeling of A@c precipitation kinetics, atomistic calculations were
undertaken [3] which were aimed at computing values of the interracial excess free energy for the
A1/Al$c interphase boundary. In the third section we present results for AUA1$C thermodynamic
properties, calculated using the embedded-atom-method (EAM) [4] in combination with Monte-
Carlo simulations and a low-temperature expansion technique.
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One objective of the EAM work was to test the accuracy of the semi-empirical approach in its
application to the A1-SCsystem. It was found that the values of A1/Al~Sc interracial energies
predicted by the EAM were significantly smaller than those derived from experimental data [5]. A
possible reason for this apparent inadequacy of the EAM approach is the lack of sufficent data to
which the atomic potentials could be fit. In situations such as this where sufficient experimental
results are not available to allow a semi-empirical approach to be applied with high accuracy, a
useful alternative is provided by first-principles techniques based upon quantum-mechanical,
electronic-structure calculations.

In the past twenty years techniques have been derived for calculating alloy thermodynamic
properties from first-principles [6]. Until recently, however such techniqes were applied to the
calculation of bulk thermodynamic properties only. As part of the CRADA project we performed
the first applications of such an approach to the study of interracial thermodynamic properties [7].
The first-principles approach is summarized and examples are provided in the fourth section. For
interphase boundaries between an Al solid-solution and the ordered Al~Li phase, as well as
between Al and the Guinier-Preston zone phase in A1-Ag, it will be demonstrated how the cluster-
variation-method [8] can be applied to the calculation of interracial excess free energies and
composition profiles using either empirical or first-principles-calculated energetic interaction
parameters.

In section V we present results of an atomistic study of the energetic of open and collapsed
vacancy clusters in aluminum. Vacancies play an important role in determining the kinetics of
precipitation of second phases in metals. They both enhance solute diffusion and serve as building
blocks for more complex defects, such as dislocation loops, that act as heterogeneous nucleation
sites. In the work presented in section V, we sought to determine the stability of vacancy clusters
that act as sinks for single vacancies in aluminum.

Future Work

In the latest stages of the CRADA project work focussed on the extension of the rate-theory code in
order to include multiple solute species, the effects of solute-vacancy interactions, the formation of
vacancy clusters, and the possibility of heterogeneous nucleation on grain boundaries. Preliminary
results obtained with the extended code are not presented in this report. Work along these lines is
the subject of continuing collaborative research between Alcoa and Sandia.

Work also is continuing on the development and application of first-principles approaches for
calculating interracial thermodynamic properties. At the present time applications are focussing on
the A1/Al$c system as well as on interfaces in the A1-Ti alloy system. In the future efforts will
need to be devoted to the consideration of interfaces between alloy phases with different parent
lattice structures, and issues relating to incoherent interfaces will need to be addressed.
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II. Kinetic Model of Precipitate Evolution

In this section the kinetic model for simulating precipitation reactions as a function of thermal
history is discussed. The approach is based on the well known chemical reaction rate theory [1]
which has been used in the past to study the kinetics of a wide variety of microstructure evolution
problems [e.g. 3]. The intent of the work described in this section is to utilize the flexibility of the
rate theory formalism to simultaneously model the processes of nucleation, growth, and coarsening
in a single framework, allowing for generalizable alloy energetic, nonisothermal conditions, and
the impact of thermal defects on the precipitation kinetics.

Method

In describing the process of precipitation, the reaction rates (the rates at which precipitates form
and evolve to larger sizes) depend on the operative microscopic mechanisms for atomic attachment
to and detachment from developing product phase particles. Five simplifications were assumed in
the present work to define quantitatively the rate equations and the reaction rate coefficients. 1)
The mechanism for size evolution of the product phase was assumed to be exclusively via the
attachment or emission of a monomer solute species and only monomers were considered to be
mobile. 2) The flux of monomers to stable product phase particles was assumed to be isotropic
and particles were assumed to be spherical. 3) Only binary alloys decomposing into stoichiometric
product phases were considered. 4) Atomic rearrangements associated with forming the product
phase were assumed to occur quickly relative to the solute arrival rate. 5) Consistent with classical
nucleation theory [4], it was assumed that the fastest forming embryos are those following the
lowest free energy path and that this path is reasonably defined by the bulk thermodynamic free
energy of the product phase together with interracial and strain energy contributions. Embryos
which form along alternative energy paths were considered to have a negligible effect on the overall
transformation rate.

Consistent with these simplifications, a general set of master equations describing the precipitate
size evolution can be written as

d N(i>l,j)

dt
= [ g(i-l,j) N(l) N(i-l,j) - e(i,j) N(i,j) ]

- [ g(i,j) N(l) N(i,j) - e(i+l,j) N(i+l,j) ]
(H.la)

d N(1)
—=- ~ ~ [ g(i-l,j) N(l) N(i-l,j) - Wj) N(i,j) ]

dt j i=2

- [ g(l,j) N(l) N(l) - e(Zj) N(Zj) ]
(H.lb)

where N(i,j) is the number density (m-q) of phase j particles containing i solute atoms plus the
appropriate number of solvent atoms to maintain the stoichiometry of the specified phase. The rate
coefficients, g(i,j) and e(i,j), indicate the rates of attachment and emission, respectively, of one
monomer to or from a phase j particle of size i. The evolution of the monomer number density is
written separately in Eq. II. lb because no emission is possible from a monomer and emission from
every greater size class results in the formation of one monomer along with a particle of the original
size minus one. The fact that monomer attachment and dimer dissociation are counted twice in Eq.
II. lb arises because the breakup of a dimer results in the creation of two monomers and, likewise,
dimer formation requires two monomers.
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The rate coefficients, g(i) and e(i) (with the phase designation omitted for clarity), were defined
separately for precritical “embryos” and for stable product phase precipitates in the spirit of the
classical theories of nucleation and growth. Precipitates were considered stable once they had

--
exceeded the critical radius, r*, plus a thermal factor, & defined as in Refs. [11] and [12].

* Particles with radii less than r*+ 6 were considered to be thermodynamically unstable with respect
to the matrix phase and to evolve by local atomic jumps with an energy barrier equal to the free
energy change upon transforming a size i embryo to an embryo of size i+ 1. The growth rates for
embryos of size i> 1 were defined similarly to the derivation of Kelton and coworkers [13]:

[1g(i) = [6 (a / fl)-2 Do e-(E~I k@v(l)] ~
i

[(
X exp –

AGV+AG~ ) (Vi+l –Vi ) + ~(Ai+l –Ai )

kT 1
(111.2)

where a is the composition dependent matrix lattice parameter and a / W is the atomic jump length
for an fcc lattice. The solute diffusivity is represented by the diffusivity prefactor, DO, the barrier
to solute migration via the monovacancy mechanism, Ea, and the monovacancy concentration,
V(1). (The evolution of V(1) will be discussed later in this section.) Ai and Vi are the surface area
and volume, respectively, of a size i embryo. The volume free energy of transformation, the

elastic strain energy, and the interracial free energy are designated by AGV,AG~, and y,
< respectively. k and T have their usual meanings. The first two factors in parentheses will be

labeled D’ and A’(i+l) in subsequent equations.

* The emission rates for the embryos were derived using the principle of detailed balance.
Specifically, it is assumed (as in classical nucleation theory [10]) that the forward and reverse
reaction rates are equal under the condition of “constrained” equilibrium where the distribution of
embryos is that which minimizes the total free energy of the system subject to the constraint of a
fixed monomer concentration. The detailed balance criterion can be expressed as

g(i,j) N(1) fi(i,j) = e(i+l,j) fi(i+l,j) (11.3)

where the demarcated number densities represent constrained equilibrium quantities. By making
use of the expression relating N(i, j) to the exponential of the product phase formation energy
[10], Eq. 11.3 can be rewritten as

W+l) EN(l) R(i)
=N(l)exp

g(i) R(i+l)

Therefore, the embryo emission rates for i>l

e(i+l) = D’ A’(i+l) N(1) (11.5)

~ AGV+ AG~)(Vi+l– vi) + ~(Ai+l– Ai )

kT 1.(11.4)

can be expressed as

Detailed balance between monomers and dimers was specially treated based upon point defect
arguments [15]. Thus, g(1) and e(2) were defined as



g(l) =2 D’A’(2)
(11.6)

N(1)2
e(2) =g(l)N(l)w= = g(1) N e-EbikT

N(2) N(~(l)/N)2eEt,lkT ..

The factor of 2 in g( 1) accounts for the enhanced relative diffusivity associated with monomer/
monomer impingement. N is the number of moles of atomic sites per unit volume. The binding
energy, Eb, is here taken to represent the formation energy of a product phase dimer, not the
nearest neighbor solute atom binding energy. Eb for A13SCwas calculated to be 0.129 eV using
embedded atom method interatomic potentials described in [16].

Particles with radii greater than r*+ 6 were considered to be thermodynamically stable
and to evolve by diffusional growth. Expressions for g(i) and e(i) were derived by combining a
mean-field, quasi-stationary approximation to the diffusion equation with the principle of detailed
balance. (Related approaches were taken in the cluster dynamics model of Kampmann et al. [17]
and in the work of Bales and Chrzan [9].) For the precipitates which have passed into growth,
detailed balance is applied under the condition of global equilibrium; i.e. the point at which no
further volume free energy change (corrected for strain) is available to drive the phase
transformation. Thus, the constrained equilibrium quantities in Eq. 11.3 are replaced by global
equilibrium densities, AGV+ AG~ in Eq. 11.4becomes zero, and Eq. 11.4 reduces to

e(i+l)=Ne(l) exp

[

~(Ai+l – Ai )

g(i) kT 1 (11.7)

The detailed balance expression is then combined with the solute flux to a size i particle (the
balance of solute crossing the spatial shell designated by the size i+l interface). Eq. 11.8 sets the
probabilistic flux, written in terms of the rate coefficients, equal to the deterministic flux.

g(i) No – e(i+l) = D V c(i+l) . fii+l (11.8)

No, the monomer concentration available to attach to stable precipitates, was taken to include not
only monomers, but also all solute tied up in embryos of size less than r* + 5, similarly to
Kampmann and coworkers’ approach [17]. NO is, therefore, representative of the instantaneous
solid solution concentration. The deterministic flux is dependent on the gradient of the
concentration in the vicinity of the precipitate/matrix interface, c(i+l ), in the direction normal to the
interface, Ili+l. c(i+ 1) is defined by the solution to the time independent diffusion equation,
solved over a time interval during which the concentration field in the vicinity of the interface is
assumed to be constant. The boundary conditions on the diffusion equation are set such that far
from a given precipitate, the concentration is equal to No, while at the precipitate/matrix interface,
the concentration boundary condition is set by the specification of an isotropic solute flux. The
resultant deterministic flux for a spherical precipitate is

4 n ri+l D( No- N~+l (I,j)) (11.9)

where q+l is the sphere radius for a size i+l precipitate. N~+l (1) is calculated as shown by
Trivedi [18], using the common tangent construction between the solid solution free energy curve
and the product phase free energy curve adjusted for the interracial area and strain energy barriers.
g(i,j) can now be written for stable precipitates as (with e(i,j) defined from Eq. 11.7)

No – ~+1 (I,j)
g(i,j) = 4 ~ ri+l D

No -N’(l) exp [y(Ai~l-Ai)/kT]
(11.10)



Finally, the impact of thermally generated defects on the diffusivity is discussed. Sundar and Hoyt
[19] addressed this issue by defining a time dependent solute diffusivity arising from an estimated
vacancy decay rate due to a fixed vacancy sink density (dislocation density, pal). The same effect.
was treated in the present work by an additional rate equation, taken from Adams and Wolfer [9],
which was solved simultaneously with the solute rate equations.

9
d v(l)
—=-2npd[ln (l/2a fi)]-l D.(v(l)-ve(l))

dt
(11.11)

The vacancy diffusivity, Dv, and the thermal equilibrium value of the monovacancy concentration,
ve( 1), are temperature dependent and written in the standard fashion as functions of the vacancy
formation energy (-0.67 eV for Al) and the vacancy migration energy barrier, equal to the
experimentally determined self-diffusion activation energy (-1.28 eV for Al) minus the vacancy
formation energy [20].

Simulation Results

The A1:A13SCsystem was chosen for the preliminary test of the reaction rate model for several
reasons. First, both diffusion data [21] and thermodynamic data [22] are available for A1-SCalloys
and recent experimental measurements have been made of the kinetics of nucleation of A13SC[5]
for comparison with the present calculations. Second, the A13SCphase forms fully coherent
interphase boundaries with the matrix, making the assumption of isotropic atomic attachment a
reasonable one.

Figure 2 compares TEM observations of nucleation of A13SCin an Al-. 11 at% Sc alloy with the
simulated “observable” (diameter > 10A) A13SCnumber densities during a quench from 923K
(above the A13SCSOIVUS)to a range of isothermal reaction temperatures. The reaction temperatures
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Figure 2. Early AlqSc evolution in Al-O. 11 at. % Sc.
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were reached by 1 see, typical of the thin samples used in the TEM study. Simulation results

shown by open symbols were obtained using y = 85 mJ/m2 and Ea = 2.32 eV. These energies
were not optimized to match the experimental data, as evidenced by too high number densities and
too slow kinetics.

To show the impact of varying the input data, y was increased to 95 mJ/m2 and Ea was decreased
to 1.99 eV (as suggested in [5]). The results, represented by the dotted symbols, do not reproduce
the experimental data, but do decrease the number densities and increase the kinetics, as expected.
Overall, the temperature dependent trends agree with experiment. The maximum in Al@c density
is attained faster at the higher temperatures, consistent with the higher solute diffusivities, and the
magnitude of this maximum is larger with lower temperatures, consistent with the larger
supersaturation driving the phase transformation.

The precipitate size distribution as a function of reaction temperature is shown in Figure 3. The
average size of the precipitates decreases with decreasing temperature or increasing
supersaturation, as expected. The influence of size coarsening at the higher temperatures is
demonstrated by the increased number densities of larger precipitates at the expense of the smaller
precipitates.

The impact of excess vacancies on the precipitation process is indicated in Figure 4 which shows

the vacancy supersaturation, Cv - Cveq, as a percentage of the thermal equilibrium vacancy content,

Cveq, together with the evolution of the “observable” A13SCdensity for two vacancy sink densities.
The enhanced vacancy content resulting from the lower sink density increases the precipitation
kinetics, but does not change the final number density of precipitates observed. The A13SCdensity
evolution for this case can be explained as follows. The rapid increase in density up to 500
seconds is due to the high vacancy content and associated high diffusivity up to that time which

1026
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❑ 61(3 ~

1022- ❑ 0 700 K
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w

❑

oQ@ 4
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o

Figure 3. Simulated A1$c size distributions after one hour at varied reaction temperatures.
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Figure4. Theinfluence ofdecreased vacancy sinkdensity onprecipitation in Al-O.llat. %Sc.

greatly enhance the nucleation and growth rates. A decrease in the kinetics is then observed as the
vacancy content begins to drop off. The gext density increase occurs as new precipitates nucleated
at the now slower rate grow past the 10 A cut-off. By 10S seconds, the solute supersaturation
(not shown) has begun to drop significantly, the production rate of new nuclei has dropped, and
the number density of larger particles flattens out. The evolution for the high sink density case
reflects the attainment of a nearly time invariant diffusivity due to the much earlier drop in vacancy
content.

Conclusions

A kinetic model of thermal history dependent precipitation based on reaction rate theory has been
presented and applied to precipitation in an A1-SCalloy. The model was shown to represent the
processes of nucleation, growth, and size coarsening in a single framework using generalizable
alloy thermodynamics. Simulation results were shown for varied thermodynamic energies (y, Es),
reaction temperatures, and vacancy supersaturations, indicating the flexibility of the approach in
studying the possible impact of varied thermal processing paths and assumed atomic assembly
mechanisms on the transformation kinetics.
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III. Embedded-Atom-Method Study of A1:A1~Sc Interphase Boundaries

Although many of the theoretical aspects of homogeneous nucleation in solids are fairly well
established [23-26], homogeneous nucleation is a relatively rare phase transformation in the
majority of metallic alloy systems of commercial interest. However, the metallurgical benefits
obtained from Al alloys containing Sc additions in the range of 0.2 at% [27-32] have been shown
by direct microstructural analysis to result from the reaction fcc+Llz in which fully coherent,
ordered crystals of A13SCform homogeneously from the matrix [3]. In view of the potential
commercial importance of this reaction and its relatively simple thermodynamic and
crystallographic aspects, it was judged to be desirable to use the fcc+L12 transformation in Al rich
A1-SCas a model system for investigating the interracial structure and chemistry associated with the
formation of a strongly ordered intermetallic phase in an aluminum matrix.

The work presented here is a theoretical continuation of previous experimental work by Hyland [3]
on the homogeneous nucleation kinetics of A13SC(L1z) in a dilute AI-SC alloy. This work was
based on TEM observations of the number density of A13SCprecipitates versus isothermal reaction
time at 561 K and 616 K that permitted the measurement of nucleation rates. Using classical
nucleation theory, an average Al(fcc) :A13SC(L1z) interphase boundary energy, y, was
subsequently back-calculated from the measured nucleation rate data. This average y was
compared with separate calculations based on classical thermodynamic theory for three low index
interface orientations, using the Becker model [33] for the chemical component of y.

A number of assumptions attended the determination of both the average ‘yextracted from the
experimental data and the calculations of y for individual boundary orientations. First, the nuclei
were assumed to be classical in nature and, therefore, to possess physical properties representative
of a uniform second phase whose total free energy can be safely partitioned into volume and
surface contributions. Second, the fcc solid solution was assumed to follow simple regular
solution thermodynamics, and the precipitate phase was assumed to be stoichiometric at 25 at$%
Sc.

Additional assumptions specific to the A1-SCsystem were made in both approaches. The average y
values calculated from experimental nucleation rate data were based on the assumption that the
anisotropy of the interracial energy was negligible in the temperature range where the experiments
were conducted. Under conditions where classical theory applies, it is usually the anisotropy of y
that is of overriding importance in determining the shape of the critical nucleus and, therefore, the
overall barrier height to nucleation. Hence, the assumption of an isotropic interphase boundary
energy requires some justification with increasing undercooking.

The calculations based on the Becker model also involved several additional assumptions. First,
the composition gradient normal to the fcc:L12 interface was assumed to be a step function, and the
compositions of each bulk phase were, therefore, assumed to be uniform throughout. This
approximation neglects contributions to the total free energy from gradient energy terms [23, 34]
that are expected to lower the interracial energy at finite temperatures. Second, each bulk phase is
assumed to be disordered in the Becker model; the neglect of long-range order in the A13SCphase is
also expected to lead to an overestimate of y. Third, the atomic interaction energies were derived
from continuum level bonding enthalpies for Al and Sc. Finally, the temperature dependence of y
was assumed to be relatively weak based upon the A1-SCphase diagram [22] which shows very
little variation in the phase boundary compositions with temperature. This is an indication that the
chemical component of y should be only weakly temperature dependent and, in view of the highly
ordered state of the Llz phase [35], entropy contributions are expected to be small.

Classical nucleation theory is based on the assumption that a critical nucleus is large enough that its
free energy of formation can be partitioned into a surface and a volume free energy contribution.
The work of LeGoues et al. [24-25] has shown that classical theory is applicable to critical nuclei



of Co rich precipitates in dilute CU-COalloys reacted at low to moderate (i.e. less than 200 K)
undercooking. A reasonable criterion for the applicability of classical nucleation theory, first
suggested in [36] and later modified in [25], is that the dimensions of a critical nucleus must be
greater than the thickness of a compositionally diffuse interphase interface at a given reaction
temperature. As noted by LeGoues, Lee and Aaronson [25], a classical nucleus is expected to be
one that attains a constant composition at some point throughout its volume, though their work

% suggested that it may not be necessary for the entire nucleus to be compositionally uniform in order
for classical nucleation theory to be applicable. If the nucleus composition varies continuously
throughout its volume, the use of the classical approximation is inappropriate for establishing the
energetic of critical nuclei and for comparing nucleation theory with experiment.

It is known that as the relative undercooking below the SOIVUSis increased the critical nucleus
dimensions decrease, making the application of classical models of critical nuclei problematic. At
large enough undercoolings, the nuclei become small enough that they are probably not
compositionally uniform at any point. In such cases, the critical nuclei are considered to be
nonclassical, and analysis of experimental nucleation rate data requires the use of a theory that can
treat nonuniform phases. The continuum nonclassical theory of nucleation due to Cahn and
Hilliard [36] is well developed for cases where the free energy of the system can be written as a
continuous function of the composition and its spatial derivatives. In the A1-SC system, such an
approach is of limited utility since the A13SCphase is highly stoichiometric, while the fcc solid
solution exhibits a vanishing volubility of Sc. These features of the A1-SCsystem imply that the
interphase boundaries will be fairly sharp compositionally on an atomic scale, thus m-aking difficult
a continuum nonclassical formulation of the two-phase microstructure. For this reason, an
alternate means of evaluating the composition profile normal to an fcc:L12 interphase boundary is

. desirable in order to determine whether nuclei are forming classically or nonclassically at a given
temperature.

s While the spatial extent of a compositionally diffuse interface cannot be probed readily via
experiment, it can be estimated by appealing to calculations based on gradient thermodynamics
26], or via atomistic simulation of the interracial region, if the interatomic potentials can be
adequately described. In view of the availability of many-body, volume-dependent interatomic
potential models such as the embedded atom method (EAM) [4], atomistic simulations of many
metallic systems are desirable. Furthermore, atomistic simulations obviate all of the classical
assumptions listed above. In the present work, EAM-based, atomistic simulations and a low-
temperature expansion (LTE) approach, to be described below, were used to determine the
applicability of classical versus nonclassical nucleation theorv in interuretinz the available

23-

e~perimen{al data in dilute A1-SCalloys. The LTE method w-asused ;Ocalc~late the temperature
dependence of the (l OO)fCC11(100)L12°interphase boundary energy. Atornistic energy minimization
at O K and Monte Carlo simulations at 573 K (chosen to coincide roughly with the temperature
range used in the experimental work [3]) were used, respectively, to study the orientation
dependence of the excess enthalpy and to calculate the width of the probable compositional
diffuseness present at the interphase boundaries. A comparison of the predicted width of the
compositional gradient to the critical nucleus size calculated from the experimental nucleation rate
data should allow for an assessment of the applicability of classical versus nonclassical nucleation
theory to the A13SC(L12) phase in the AI-SC binary alloy in the temperature range used.

In the next subsection, details of the interatomic potentials used in this study are presented along
: with a discussion of the ability of these potentials to reproduce established thermodynamic

behavior. The subsequent two subsections discuss the low and high temperature calculations,
respectively. Finally, the likelihood of observing classical nucleation in the temperature range

$ studied in the experimental measurements [3] of the nucleation rate of the A13SC(L1z) phase in
dilute AI-SC alloys is discussed.
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Details of the Interatomic Potentials

A rough set of EAM [4] interatomic potentials were developed for the Al(fcc):Al$c(L12)
interracial energy calculations. The potentials were optimized neither for pure Al nor for pure Sc.
The Al potential was taken from Voter and Chen [37]. For simplicity, the Sc potential was fit

.

assurnhw an equilibrium fcc crvstal structure, rather than its standard state hcp structure. This
assumpt~on se~ms reasonable b“ecause the properties of the fcc solid solution and of the A13SC(Llz) .
phase were the main focus of the potential development, both of which incorporate Sc in an fcc
environment.

Calculated properties of Al, Sc and A13SCare compared to experimental information in Table I.

TABLE I. CALCULATED VS. EXPERIMENTAL MATERIAL PROPERTIES

B
(10” Pa)

A

<G>v
(101] Pa)

c,,
(10” Pa)

C,*
(10” Pa)

(lOs$;a)
E vac

(eV)
AEbcc-fcc

(eV)
AEbcp-fcc

(eV)
H

(eV)

(:?;
Lat. Param.

(A)
SISF

(erg/cm’)
(100) APB
(erg/cm’)

(111) APB
(erg/cm’)

Al”
calculated experiment

0.793 0.793

1.529 1.213

0.277 0.294

1.073 1.14

0.653 0.619

0.321 0.316

0.637 0.67

0.073 0.10

0.014 0.06

Sc
calculated experiment

0.572 0.572

3.760 1.000

0.284 0.298

0.714 0.969

0.501 0.373

0.401 0.298

1.442 1.4

0.015

-0.003

-0.663 -0.62

A1$c
calculated experiment

1.011 0.992

-0.259 -0.4

4.101 4.106

256.3 265

330.2 450

433.9 670
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the table, B, A and CG>v are the bulk modulus, the anisotropy ratio and the Voigt averaged shear
modulus, respectively, derived from the elastic constants as follows:

B= C11+2C12

3

A=
2 C44

Cll – C12

(G)v= 3C44+:’1- C12

(111.1)

(111.2)

(111.3)

A reasonable, if not ideal, fit between calculated and experimental properties [22, 39-41] was
obtained. Note that the calculated value of the pure Sc fcc to hcp transformation energy, ~hcp-fee,
is negative. This is an interesting result because even though the potentials were fit assummg that
Sc atoms occupy ideal fcc sites, the calculated value of @~p.f~c indicates that the hcp structure
should be more stable than the fcc structure for Sc, in agreement with experiment at low
temperatures.

A series of Monte Carlo (MC) calculations were carried out to study the stability of the L12 phase
and to test the ability of the A1-SCpotentials to predict the appropriate equilibrium phases at a
specified combination of temperature, pressure and chemical potential difference, Ap = (USC-
PAI). This test was also apphed to potentials for Al, Ni and Ni3Al by Foiles and Daw [42]. The

. MC calculations were carried out assuming the system is always in thermodynamic equilibrium,
Therefore, in two phase regions, the chemical potentials of the individual atomic species i, in each
phase, ~i,a(b), must be equal by definition; i.e., ~i,a = ~i,b = Wi. AISOby definition, the

* chemical potentials of the individual species must be constant as a function of composition across a
two phase region, thus making Ap constant across this region as well. Al and Sc form a series of
line compounds separated by two phase regions [22]. Thus, a plot of Ay versus Sc content should
show a series of horizontal lines separated by sharp vertical transitions at the boundaries between
two phase and single phase regions. Our goals were to test whether the fitted potentials could
generate such a plot and to identify the appropriate value of Ap for the two phase
A1(fcc):Al$3c(Llz) region of interest in this study.

The procedure involved setting up a two phase “box” containing a total of 864 atoms, Al(fcc) in
one-half of the box and A13SC(L12) in the other, finding the OK minimum energy atomic
configuration using a conjugate gradient descent technique [43], and then conducting a series of
MC simulations at 573 K, varying AL. The total number of atoms was held constant, but the
relative number of Al atoms to Sc atoms was allowed to change in accordance with the
requirements of an open system using the specified values of Ap. A MC step comprised either
a) a random spatial adjustment of a randomly chosen atom plus a replacement of its atomic species
(A1->SC or SC->AI) or b) a random adjustment of each of the three box lengths. Step type b)
allows for a change in total volume, which is effectively comparable to the condition of zero
applied pressure. Each simulation was equilibrated for 2,500,000 steps, and the composition of
the system was averaged over a subsequent 1,000,000 steps. Periodic boundary conditions were
enforced on the computational box, the effects of which are discussed in the next section.

:
The black dots in Figure 5 indicate the resulting averaged composition as a function of Ap. Note
that the axes have been reversed, making Aj.Lthe ordinate rather than the abscissa, in order to more
clearly match the expected Ap versus at% Sc diagram described above. As shown in the figure,

●

large ranges in A~ resulted in single-valued AI:SC compositions. These compositions correspond
to the compositions of the line compounds, the boundaries between two phase regions. The
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Figure 5. Difference in chemical potentials, Aw, versus atomic % Sc.

potentials did generate both the compositions and crystallographic structures of the Al(fcc),
A13SC(L12), A1SC(B2) and Sc(fcc) phases. The AIzSC and A1SC2phases, however, never
materialized. This was not surprising, as the interatomic potentials were not fit for either of these
two phases. Furthermore, the constraint on the simulation box volume allowing the lengths of the
box axes to change, but not the angles between axes, should have hindered the formation of the
hcp AISCZ phase. The AIzSC phase, on the other hand, is cubic, but possesses a 24 atom unit cell.
The formation of such a complex phase is probably beyond the capabilities of the present
simulations. Nevertheless, to assure that the two phase initial atomic configuration used in the
simulations was not biasing the equilibrated state, additional simulations were run starting with a
random fcc solid solution of61 at% Sc. The results from this set of simulations are designated in
Figure 5 by crosses. All of the final compositions are in good agreement with the original set of
simulations except for the composition calculated for Ap equal to -0.4. The resulting mole fraction
of Sc would lead one to believe that the AISCQphase had been created, but, in fact, the resulting
atomic configuration was not single phase. Instead, large blocks of pure fcc Sc were separated by
layers of Al. This result illustrates the sensitivity of the equilibrated state obtained from the chosen
interatomic potentials to the initial atomic configuration. Nonetheless, the remaining results were
consistent, and for the purposes of the present work, the chemical potential difference for the
fcc:L12 two phase region of interest was established at Ap--l.3 eV.

Little emphasis is placed upon differences among the individual absolute values of the calculated
interracial energies to be discussed in the following section because of the nonideal fit of the
potentials to the limited experimental material properties and thermodynamic data. We expect,
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however, that the reasonable fit to the available information demonstrated above should result in a
valid representation of the qualitative behavior of the interphase boundary energies thus calculated.

Low Temperature Interphase Boundary Energy Calculations

$ The total energy of a system containing a coherent interphase interface separating two phases that
posess different molar volumes can be written as a sum of the contributions from a) the total
energies of the two isolated phases, b), the chemical work associated with the creation of the
composition gradient between phases and c), the energy associated with atomic and interplanar
displacements at the interface. The difference between the sum of the last two factors and the
volume-dependent elastic strain energy is the classically defined interphase boundary energy, y.
An advantage of atomistic simulation is its ability to treat the chemical and atomic relaxation
contributions toy consistently without making the assumptions required in continuum level
treatments.

The energies of systems containing (100),(110) and (1 11) Al: A13Sc interfaces were minimized at
OK. Becau$e the unconstrained lattice parameters of Al and A13SCdiffer by approximately 1.4%,
being 4.05 A and 4.105 A for Al and A13SC,respectively, the bulk phase reservoirs are expected
to deviate from their far field, undistorted, molar volumes in the vicinity of the interface.
Simulations of the chosen interfaces were setup with total number of atoms and total number of
bulk atomic layers parallel with and on either side of the interface as list~d in Table II. The initial
configuration was established with a uniform lattice parameter of 4.05 A in both phases and a
perfect match at the interface. Periodic boundary conditions in all directions were employed,

: making the interface effectively infinite in extent, but producing “image” interfaces parallel to the
actual interface. The periodic boundary conditions also caused the outer face of the simulation box
parallel to the actual interface to be a second explicit interface. Thus, all calculated excess energies

. are divided by two and are representative of the average energy of the two explicit interfaces.
Figure 6 is a schematic of the simulation conditions.

It is important to emphasize the simulation conditions for the following reason. Based on
Figure 6, it is clear that atomic relaxation in the direction perpendicular to the interface is not
artificially constrained by the imposition of periodic boundary conditions. However, the box faces
perpendicular to the plane of the interface are constrained to remain flat as a consequence of these
boundary conditions. In other words, far from the interface, the lattice constants of the two
reference phases parallel to the interface are artificially rgquired to be identical. They are inhibited
from fully relaxing to their equilibrated values of 4.05 A and 4.105 A. Therefore, neither
reservoir attains its undistorted unit cell dimensions far from the interface. This enforced condition
is expected to raise the total energy of a system containing an interface by some amount over the
value that would be obtained if 3 dimensional relaxation was permitted.

In order to calculate a barrier height for dlffusional nucleation we require the chemical component
of the interphase boundary energy. To ascertain this quantity, which is independent of the size of
the computational system under study, the following procedure was adopted. The energy of the
system containing the interphase boundary was minimized by allowing atomic and volumetric
relaxation at zero applied pressure, subject to the boundary conditions discussed above. Similar
energy minimizations were carried out on the bulk Al and Al$c phases setup with the same

2 orientations as the interface calculations and using the same total number of atoms. In the
simulations of the bulk Al and A13SC,the lattice constants parallel to the interphase boundary were
fixed at the value obtained from the system containing the interface. As a consequence of the

A imposed boundary conditions, the energies of the elastically distorted bulk reservoirs were
calculated by permitting relaxation normal to the interface. The’interracial energies, y, were
subsequently calculated as
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TABLE II. DETAILS OF INTERFACE SIMULATIONS

(loo) (110) (111)

total #of atoms: 2560 3584 3024

# Al: 2240 3136 2646

# Sc: 320 448 378

#of layers in each

phase parallel with and 10 16 9

on either side of the

.

Eipb – ~ (EAl + EA13SC)
y=

2A
(111.4)

with the values of Ei’s being the energies of the interface containing systems and of the two
elastically distorted bulk reference phases, respectively, and A being the interracial area. The O K
excess energies for each of the three crystallographic interfaces at zero applied pressure are listed in
Table III. As shown in the table,‘y(loqcY(110) < y(l 1l), with y(l 10) > (2)”2 y(100) and y( 11 1) >
(3)*n y(100). The ratios of these calculated interracial energies dictate that both the (1 11) and
(110) orientations are unstable with respect to (100) faceting at O K. The calculated results from =
[5] are presented in Table III for comparison. Note that the trend in energies is opposite to that
calculated atomistically. The Becker model predicts that (111) facets should be significantly more
stable than (100) or (110) facets. If the Becker model predictions were correct, one would expect
(11 1)L12II(11 l)fcc, reflecting the low energy of the (1 11) interface, since orientation relationships
are presumably set at nucleation and survive into growth. Experimentally, this orientation
relationship is not observed. Repeated TEM investigations [5, 30-32] have shown that A13Sc
precipitates nucleate with a cube:cube orientation relationship and do not demonstrate an orientation
relationship defined by (111) conjugate habit planes. The atornistic calculations described in the
present work are more consistent with these experimental observations.

Also listed in Table III are the calculated lattice parameters both perpendicular and parallel to the
interface. The perpendicular lattice parameters are seen to be close to the average between the pure

Figure 6. Schematic depiction of interface simulation set-up with periodic boundary conditions.
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TABLE III. CALCULATED AND PREVIOUSLY ESTIMATED r51 VALUES
OF Al/All Sc INTERPHASE BOUNDARY ENERGIES.

.
(loo) (110) (111)

●

y (mJ/m*) 32.5 51.3 78.2

(from [5]) (126) (112) (28)

all 4.080 4.086, 4.077 4.084

a, 4.071 4.069 4.066

Al and pure A13SClattice parameters, as expected, since the bulk phase lattice constants are
permitted full relaxation perpendicular to the interface. The values of the lattice parameters parallel
to the interface, however, are those that result from the minimization of the total energy subject to
the periodic boundary conditions.

High Temperature Interphase Boundary Energy Calculations
:

To examine the Sc composition profiles near the interphase interface, MC simulations were carried
out at 573 K for each of the three orientations, and low temperature expansion (LTE) calculations

. were performed as a function of temperature for the (100) interface. The MC simulations were
carried out with zero applied pressure, constant temperature and constant number of atoms. Unlike
in the MC simulations described earlier, atomic MC steps involved randomly choosing two atoms,
giving each a random spatial adjustment and then exchanging their respective element types. This
kind of step mimics long-range, volume interdiffusion, without regard for the path an atom may
have taken, but holds constant the relative number of Al atoms with respect to the number of Sc
atoms (closed system). The initial atomic configurations used were the O K, minimum energy
interface and bulk configurations described in the previous section. Each conilguration was
subsequently equilibrated at 573 K for 5,000,000 MC steps, followed by a 5,000,000 step
period over which the total enthalpy, volume, parallel and perpendicular lattice parameters, and
atomic positions were averaged.

To determine the temperature dependence of the total interracial energy, including entropic
contributions, LTE calculations of finite-temperature grand potentials (Q) [44] were performed for
the bulk Al and A13SCphases, as well as for the (100) AI:A13SCinterphase boundary. In the LTE
method [45], the grand potential is calculated directly from a Taylor series expansion of the
logarithm of the alloy partition function. To second-order, the LTE expression for the grand-
potential has the following form:

f2?=E0-kBT~ exp(-A@P /k~T)+l/2kBT~ exp(-2A+/k B7’)
: P P

(111.5)
- 1/2 kB T ~ (exp (- Atmp,pI/ kB T) - exp (-[AcoP + AOP] / kB T))

* P7P’

where the sums are over lattice sites p, and where kB and T represent Boltzmann’s constant and the
temperature, respectively. In Eq. (111.5),EOrepresents the O K grand potential, and the variables
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ACOPand ACOP,P.represent excitation energies. A@Pdenotes the change in the zero-temperature
grand-potential associated with switching the atom type at site p. Similarly, ACOP,P’is the cost in the
zero-temperature grand potential associated with changing atom types at both sites p and p’ (note
that for close-neighboring sites, p and p’, ACOP,P’# A(I)P+ AO)P).

Formally, the finite-temperature interracial energy for an (hkl) interface can be written as follows
[44]: l’hkl=(~~!d- Q)/A, where f&l is the value of the grand potential for an inhomogeneous alloy
system containing an (hkl)-oriented interphase boundary, and Q. corresponds to the elastically
distorted homogeneous bulk phase reservoirs. Using the LTE approach, the grand potential
difference can be determined once the excitation energies have been computed for all symrnetry-
inequivalent points in the bulk phases, and for all points inside a region near the boundmy where
the excitation energies have values which differ from those in either of the corresponding bulk
phases.

In the current calculations, we have included terms in the low-temperature expansion associated
with all single-atom excitations and two-atom substitutions for pairs of atoms separated by a
distance less than or equal to the fourth neighbor shell. The inclusion of these terms was found to
lead to an expansion for the grand potential difference which was reasonably well converged (the
contribution from the second-order term is less than 1/3 that of the first-order term contribution) for
temperatures up to 800 K. Excitation energies were calculated directly from the EAM potentials
described earlier using a supercell geometry. The supercell included a total of 12 unit cells normal
to the interphase boundary and 6 unit cells in each of the in-boundary plane directions, requiring a
total of 1728 atoms. The atomic positions were relaxed to minimize the energy after each atomic
rearrangement. Note that in calculating the values of the excitation energies, temperature effects
associated with atomic vibrations were neglected. As a consequence, the LTE calculations of the
alloy grand potentials include configurational, but not vibrational entropy contributions.

In Figure 7, the total interracial energy, y, enthalpy, H, and entropy contribution, -TS, are plotted
as a function of temperature for the (100) interphase boundary. It is seen that the excess free
energy is practically temperature independent up to approximately 400 IS, and then decreases by
approximately 10% from 400 K to 800 K. The decrease above 400 K can be attributed to the
significant configurational entropy contribution at the higher temperatures which accompanies
increasing compositional diffuseness at the interface. The experimentally determined average y is
93*22 mJ/m2 at 616 K and 78*2O mJ/m2 at 561 K [3], compared to the LTE values of 39.1
mJ/m2 at 616 K and 39.7 mJ/m2 at 561 K, respectively, for the ( 100) interface. In spite of the
nonideal fit of the interatomic potentials, the calculated values of yf100)seem reasonable with
respect to the experimental results that were secured from the application of classical nucleation
theory to the nucleation rate data.

An important influence on the high temperature interracial thermodynamic properties is the
composition gradient across the interfaces. The average compositions of atomic layers parallel to
the interfaces were determined from the MC results and are graphically represented in Figure 8.
For each orientation, distinctly bulk-like regions were found on either side of the interfaces
separated by approximately four atomic layers of compositional diffuseness. The chemical
diffuseness was most pronounced for the highest energy (11 1) interface followed by the (110) and
the (100) interfaces.

Two issues are raised pertaining to the Sc distributions in the atomistic calculations and, therefore,
to the calculated interphase boundary energies. The first issue is whether or not enough layers
parallel to the intefiaces were included in the calculations to actually have large enough bulk-like
regions so that the explicit interfaces were both fully relaxed and non-interacting. The second is
that, even though Sc volubility in Al is negligible, it is not zero. The MC simulations discussed
thus far involved pure Al in contact with pure A13SC. Therefore, the slight volubility of Sc on the
Al side of the reservoir bounding the interfaces could only come from the bulk A13SC,rather than
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;,
from equilibrium segregation of Sc in solid so!ution ko the interface.
carried out to address these two issues.

To address the first issue, a second set of O K energy minimizations

Several calculations were

and 573 K MC simulations of
the Al: A13Sc (100) interface were carried out with 18 bulk atomic layers parallel to and on either
side of the interface, as opposed to the 10 layers used in the previous (100) interface calculations.
4608 atoms were included in these calculations, as opposed to 2560. The interracial area was the
same as that of the previous system. The OK interracial excess enthalpy was calculated to have the
same value, 32.5 rnJ/m2, as was obtained from the smaller system. The MC calculated
composition profile at 573 K for the larger system is shown in Figure 9. Again, two bulk-like
regions are separated by four atomic layers of compositional diffuseness. From these results, it is
concluded that the smaller simulation systems are capable of representing non-interacting interfaces
separated by bulk phases of infinite extent.

To investigate the temperature dependence of the fcc bulk phase composition and its effect on the
spatial extent of the compositionally diffuse region associated with the AI:A13SCinterphase
boundaries, two 573 K MC simulations of the(111) interface orientation were carried out with
0.25 and 1.0 at% Sc in Al solid solution. Both of these compositions are beyond the volubility
limit predicted by the phase diagram. Therefore, the majority of the excess Sc was expected to
create additional A13SC,the remainder being necessary to establish the appropriate chemical
potential of Sc in the fcc phase in the limit of a nonvanishing solid volubility. For all simulations,
the Sc was initially randomly distributed in the solid solution, the systems were energy minimized
at O K, and then the MC procedure discussed above was carried out. Composition profiles from
these two cases showed little difference from that of the pure A1:A13SCinterface as shown in
Figure 10. Hence, it is reasonable to conclude that the calculated composition profiles are only
weakly affected by the exact volubility of Sc in Al because a truly dilute solid solution exists, even
at relatively high values of the homologous temperature T/T~OlvU~.

Applicability of Classical Theory to A1-SC Alloys Reacted at 573 K

In their treatment of nucleation in a nonuniform regular solution, Cahn and Hilliard [36] suggested
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Figure 9. Larger system interphase (100) interface composition profile at 573 K.
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that a useful criterion for determining the applicability ‘~f‘cla&sicaltheory can be expressed in terms
of y and the extent of the compositional diffuseness, 1, as follows:

7r@
—<<1
45k T

(111.6)

In this expression, k is Boltzmann’s constant and T is absolute temperature. As long as the width
of the diffise region is small compared with the nucleus size, classical theory is expected to be a
reasonable approximation. Taking the LTE-calculated value of y at 573 K, -3? mJ/m2, and using
a compositionally diffuse region of 4 ● d(looj with a lattice parameter of 4.077 A, the argument on
the left side of equation (111.6)is approximately 0.75. This value is not small compared to unity.
Alternatively, taking the average value of the interracial energy extracted from experiment [3] and
using the definition of the radius of a classical critical nucleus, r*, in terms of the interracial energy
and the strain energy corrected volume free energy change, the size of the nucleus can be calculated
from equation (III. 7) and compared to the width of the diffuse region simulated in the present
work:

-2y
r* = (111.7)

AFv+ (p

where $ is the elastic volume strain energy. Using values for the interracial energy of 94 mJ/m2
[3], for AFV of -4.855 x 108 J/m3, and for $ of 1.92 x 107 J/m3, a value of r* = 4.07 ~ is
obtained. This value is roughly the unit cell dimension. (The larger of the two experimentally
determined values for the interracial energy was used because it should result in an upper bound
for the nucleus radius.) This value of the nucleus radius is smaller than the calculated interracial
thickness, 1. With respect to the Cahn-Hilliard criterion discussed above, it is unlikely that
nucleation of A13SCshould be described classically in the temperature range examined in [3]. This
may be anticipated in view of the large undercooking that was used in [3] to avoid the cellular
reaction that occurs at temperatures above about 650 K. Using the phase disappearance method, a
SOIVUStemperature of about 840 K was secured for these alloys. This implies an undercooking of
greater than 260 K for the experimental measurements of nucleation kinetics. Under such
conditions, the classical definition given by equation (111.7) is not very physical. It is probably
sufficient to interpret these findings as a strong indication that a wide range of embryo shapes may
become stable nuclei and that analysis of the nucleation barrier heights is best undertaken in terms
of nonclassical theory in this case.

Conclusions

The orientation dependence of the Al(fcc):Al$c(L12) interphase boundary energy (at O K) and the
temperature dependence of y were calculated using EAM based atornistic simulation and low
temperature expansion methods, respectively. Atomistic OK results indicated that the (100)
interface should be the most stable of the three orientations studied and that the (111) interface
should be the least stable; thus, A13Sc precipitates at OK would be expected to be principally
cuboidal. LTE calculations of the (100) interface showed that the interracial energy was roughly
temperature independent up to 400 K. Above 400 K, the interracial energy was observed to
decrease with increasing temperature as the entropy contribution became more significant with
increasing interracial compositional diffuseness. At 573 K, MC calculations showed a four atomic
layer compositionally diffuse region was observed at the interphase interfaces. Independent
estimates of the critical nucleus dimensions and the relative barrier heights to nucleation applicable
at 573 Kin Al-O.1 at%Sc indicate that critical nuclei of A13SCprobably are nonclassical and,
therefore, are likely to be nonuniform during the early stages of precipitation. A nonclassical
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theory of nucleation of an ordered phase from a disordered solid solution would be required to
make a more quantitative estimate of the properties of the nuclei at large undercoolings by means of
continuum theoretical treatments.

.
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IV. Thermodynamic Properties of Interphase Boundaries

In multiphase materials the interracial layer between two coexisting phases is commonly referred to
as an interphase boundary (IPB). The structural and thermodynamic properties of IPBs play an
important role in controlling the morphology of precipitates as well as the kinetics of their
formation. For example, the classical steady-state nucleation rate is related exponentially to the
cube of the interphase energy, defined as the excess free energy per unit area associated with an
IPB. In the absence of strain the equilibrium shape of a precipitate is determined by the
dependence of the interphase energy upon crystallographic orientation. In alloys IPBs are
generally compositionally diffuse [23], and it has been pointed out by Cahn and Hilliard [36] that
in situations where the “width” of the IPB is on the order of the size of the critical radius, the
thermodynamic formalism underlying classical nucleation theory is of questionable validity.

In this section results of recent calculations will be presented for the equilibrium structural and
thermodynamic properties of coherent IPBs between phases with FCC-based crystal structures in
the Ag-Al and A1-Li alloy systems. Specifically, in Ag-Al we consider IPBs between two

disordered phases: the et-Al (solid solution) and &-Guinier-Preston-zone (GP-zone) phases (see for
example [46]). In A1-Li by contrast, calculations have been performed for IPBs between

disordered et-Al and the ordered 6’ Al~Li phase with an L12 crystal structure. The cluster variation
method (CVM) [8, 47] and low-temperature-expansion (LTE) [45] statistical-mechanical
techniques have been used to calculate interphase energies and equilibrium composition profiles as
a function of temperature for IPBs with high-symmetry crystallographic orientations. The
energetic parameters required as input for these calculations have been obtained in two ways: in

. the case of A1-Li they were taken from the phase-diagram-fitting work of Garland and Sanchez
[48], whereas for Ag-Al they were derived from the results of first-principles total energy
calculations. The results presented below for Ag-Al provide an example demonstrating how ab-

. initio techniques can be applied to the study of finite-temperature IPB properties in alloys.

Computational Approach

Let QA~ T) denote the value of the grand potential [44] in a binary alloy at temperature T and
chemicalfield (defined here as half the difference between the chemical potentials for the two
atomic species) Ap. Q and Am will denote the values of the grand potential and chemical field
corresponding to bulk thermodynamic equilibrium between the two alloy phases of interest.
Additionally, f2~~fA~, T) will denote the value of the grand potential for an inhomogeneous
system containing separate spatial regions of these two phases together with coherent IPBs
between them oriented along (hkl). If one can calculate J2~~fA~, T) and f2~(A~, T) a value of
the interphase energy fi~~can be derived from the following equation [44]:

(IV.1)

where A~~z is the total cross-sectional area associated with the IPBs.

For the purpose of calculating the values of the various thermodynamic potentials entering Eq.
(IV. 1), the CVM [8, 47] and LTE [45] techniques have been used in the present study. In the
CVM variational estimates of grand potentials are determined from minimizations of a free energy
functional which explicitly takes into account contributions to the enthalpy and entropy arising
from correlation between atoms within some “maximal” cluster of lattice points. The CVM free
energy functional can be written in terms of a linearly independent set of correlation functions [47]
defined as generalized short-range order parameters for multisite clusters. At low temperatures
minimization of the CVM free energy functional becomes numerically ill-conditioned due to the fact
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that the entropy is expressed in terms of logarithms of cluster probabilities, the values of which
approach zero or one at low T. At these low temperatures values of the grand potential can be
calculated using the LTE technique in which a Taylor series expansion of the logarithm of the
partition function is performed about the zero-temperature ground-state energy [45].

The details of the CVM and LTE calculations performed in the current study were given previously
[49] and will be only briefly described here. The tetrahedron-octahedron approximation [47] of the
CVM was employed and single and double-atom substitutional excitation energies were taken into
account in the LTE. Values of Q and Apu at a given temperature were determined from
calculations of the grand potential as a function of chemical field for each of the bulk phases of
interest; ii?~and AM are defined by the point where the Q vs. AU curves for each of the two
phases intersect. In order to compute the values of f2~~~(AM, T) required to calculate the
interphase energy according to Eq. (IV. 1), CVM and LTE calculations were performed for large
supercells [49] constructed to contain spatial regions of each of the bulk phases of interest together
with (hkl)-oriented IPBs between them. Interesting structural information about the IPBs is
provided by the values of the correlation functions obtained from CVM minimizations of the grand
potential for the supercell. In particular, from the point and pair correlation functions the average
concentration, long-range and short-range order parameter profiles can be calculated as a function
of distance across IPBs.

In the CVM the enthalpy is written in terms of products between cluster correlation functions and
eflective cluster interaction (ECI) parameters [47]. The ECI parameters are formally defined as
configurationally-averaged exchange energies [47] and their values can be calculated in a variety of
ways [6, 50]. Empirical values of the ECIS can be derived by fitting calculated CVM free energies
to experimentally measured thermodynamic and/or phase diagram data [50]. Alternatively, ECIS
can be obtained by fitting the zero-temperature CVM expression for the energy to the results of
first-principles total energy calculations performed for ordered alloy superstructures using any of a
variety of quantum-mechanical, electronic-structure techniques [6]. In the current study empirical
values of the ECI parameters for fee-based alloys in the A1-Li system were taken from the phase-
diagram-fitting work of Garland and Sanchez [48]. In the work of Garland and Sanchez the
tetrahedron-octahedron approximation [47] of the CVM was used and values of the ECI parameters
for first and second neighbor pairs were adjusted in order to obtain good agreement with
experimental measurements for the u-6’ phase boundaries (see references listed in [48]). For the
current study of IPBs in Ag-Al values of the ECI parameters were derived from first-principles
[51]. Specifically, zero-temperature total energy calculations were performed for 22 hypothetical
fee-based Ag-Al compounds using the linear-muffin-tin-orbital method in the atomic sphere
approximation [52]. An excellent fit (to within a maximum error of less than 1 mRy/atom = 1.3
kJ/mole) to these energies was obtained using an expression for the energy which included ECI
parameters for 11 clusters containing as many as six atoms and possessing a range as far as the
second-neighbor shell (these 11 clusters are the “subclusters” of the fcc regular tetrahedron and
octahedron). The first-principles-derived ECI parameters for Ag-Al were used in a CVM
calculation of the metastable fcc miscibility gap and the predicted critical temperature was found to
agree to within 45 K of the experimentally measured value(715 K [46]).

Results for IPBs between u and 6‘ Phases in A1-Li

In Figure 11 CVM and LTE results are presented for the interphase energies associated with IPBs
between the u and 6’ phases in A1-Li. Figure 11 (a) displays the interphase energy plotted as a
function of temperature for IPBs with three crystallographic orientations: {111 } (dashed line,
highest values of the interphase energy), {100} (solid line, lowest values of the interphase energy)
and {110} (dashed-dotted line, intermediate values of the interphase energy). At low temperatures
the calculated results display a large degree of crystallographic anisotropy which decreases as the
temperature is increased. The interphase energies are found to be significantly temperature
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Calculated interphase energies for {100} (solid line, smallest values),

)0

{11 1} (dashed

line, largest values), and {110} (dashed-dotted line, intermediate values) IPBs between cxand 6’
phases in A1-Li are plotted as a function of temperature in (a). In (b) the calculated results for
{100} IPBs are plotted as open symbols. The filled circles, square and triangles in (b) correspond
to values of the interphase energy based upon the analyses of experimental kinetic data performed
by Hoyt and Spooner [53], Ardell [55] and Baumann and Williams [54], respectively.

dependent: the calculated values of ~ decrease by as much as a factor of six when the temperature
is raised from zero to 650 K. In the temperature range where 5’ precipitates have been studied
experimentally (between roughly 350 and 500 K) the interphase energies are found to be practically
isotropic; this result is consistent with the fact that the shape of 6’ precipitates has been observed to
be roughly spherical. In Figure 11 (b) the results of the present calculations for the interphase
energy of {100} IPBs (open circles) are compared with previously published [53-55] estimates
(solid symbols) of the average interphase energy. The latter values, which are based upon
analyses of experimentally measured nucleation and coarsening data, range from 2 to 25 mJ/m2. In
the present calculations the {100} interphase energy is predicted to vary from 7 to 11 mJ/m2 over
the temperature range displayed in Figure 11 (b). Generally speaking, it can be seen that the
previously published estimates of the interphase energy bracket the present calculated values.

In Figure 12 the CVM-calculated composition profile is plotted across a {11 1} IPB at a
temperature of 482 K. Each diamond symbol in Figure 12 corresponds to the average composition

of a plane parallel to the IPB. The calculated compositions take on their values for the bulk cxand

8’ phases on the furthest left and right hand sides, respectively, of Figure 12. It can be seen that

the distance over which the composition varies from its value in the u phase to that in the 8’ phase
across the IPB is sizable. From Figure 12 the width of the diffuse IPB is found to be roughly 6
lattice parameters or 24 ~. Calculations of the IPB width were performed at a number of
temperatures between 373 K and 482 K. Over this temperature range the width was found to
decrease monotonically with temperature to a value of 19 ~ at 373 K.

Results for IPBs between u and &-GP-Zone Phases in Ag-Al

In Figures 13 and 14 results of first-principles calculations are plotted for IPBs between the

disordered et-Al and &-GP-zone phases in the Ag-Al system. In Fig. 3 (a) calculated values of the
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Figure 12: Calculated composition profile for a {111} IPB between a and 8’ phases in A1-Li at
a temperature of 473 K. Each filled diamond symbol corresponds to the average composition
(plotted in units of atomic % Li) in a plane parallel to the IPB. The horizontal axis corresponds to
the distance perpendicular to the IPB~ “
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Figure 13: Calculated results for IPBs between u-A1 and &-GP-zone phases in Ag-Al. In (a)
calculated interphase energies for IPBs with {111} and {100} orientations are plotted with open
circles and squares, respectively. In (b) the filled circles denote calculated values of the ratio
fil,/fiW (taken from theresults in (a)) plotted as a function of temperature divided by the critical
temperature TC. The open circles in (b) denote values of the ratio ~,l/fi@ obtained from the Wulff
construction using values of {111} and {100] facet lengths for c-GP-zone precipitates measured
by Alexander et al. [57] using transmission electron microscopy.
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Figure 14: The calculated profiles for the composition and the nearest-neighbor, in-plane
Warren-Cowley short-range-order parameter are shown in (a) and (b), respectively. The circle and
square symbols correspond to results for {100} and {111} orientations, respectively. As in Fig.
2, the compositions are averaged over all sites in planes parallel to IPBs. Similarly, the short-
range-order parameters are averaged over all nearest-neighbor pairs within planes parallel to
interphase interfaces.

interphase energy are plotted against temperature for IPBs with {100} (open circles) and {111}
(open squares) crystallographic orientations. It can be seen that the calculated values of y
monotonically decrease as a function of temperature; at the critical temperature corresponding to the
top of the metastable fcc miscibility gap the interphase energies vanish for all crystallographic
orientations [23]. The values of y for {111} IPBs are lower than those for {100} -oriented
interfaces at all temperatures. This finding is consistent with the results of regular-solution-model
[56] calculations which predict that IPBs with{111 } orientations have the lowest values of the
interphase energy at all temperatures in model phase-separating fcc alloy systems where the
energetic are parametrized by a single nearest-neighbor-pair interaction.

In Figure 13 (a) it can be seen that the ratio fil,/~W decreases with increasing temperature. In’
Figure 13 (b) the first-principles-calculated values of this ratio are plotted (with filled symbols) as
functions of the temperature divided by the critical temperature (TC). Also plotted in Figure 13 (b)
are values of the ratio ~l,/~w derived from the resultsof transmission-electron-microscopy(TEM)
measurements performed by Alexander et al. [57]. These latter values, which are plotted with
open symbols, were computed through the use of the Wulff construction using the TEM-measured
{100} and {111} facet lengths for c-GP-zone precipitates. The error bars in Figure 13 (b) arise
from the statistical variation associated with the measured precipitate facet lengths. The level of
agreement found between the first-principles and TEM-based results shown in Figbre 13 (b) is
remarkable considering that the former were calculated from first-principles without the use of any
adjustable parameters.

In Figure 14 CVM-calculated composition and short-range-order (SRO) parameter profiles are
plotted for Ag-Al IPBs at a temperature of 450 K. The open circle and square symbols in Figure
14 (a) correspond to the average compositions of planes parallel to {100} and {111} IPBs,
respectively, plotted as a function of distance across the interface. A monotonic decrease in the
composition is predicted in going from the CX-A1(left hand side of figure) to the E-GP-zone (right
hand side) phase. The calculated width of the IPB is seen to be approximately 4 lattice parameters

33

—- . .



(16 ~). As the temperature is raised from 450 K the width of the IPB increases and diverges as the
calculated critical point (T=760 K) is approached.

Each symbol in Figure 14 (b) gives a value of the nearest-neighbor Warren-Cowley SRO
parameter averaged over all pairs within a plane parallel to the IPB. Positive values of the SRO
parameters indicate a preference for like nearest-neighbor bonds, i.e., clustering SRO. It can be
seen in Figure 14 (b) that an enhancement of the SRO parameter in the IPB region is predicted. In
other words, within the IPB layer the tendency for local phase-separation is enhanced. This result
can be understood as being a consequence of the fact that planes within the IPB layer have
compositions which lie inside the bulk miscibility gap.

Interpretations of small-angle X-Ray scattering (SAXS) results [58] have led to suggestions that

Ag segregates to IPBs between the matrix and ~-GP-zone precipitates in Ag-Al. Since such
suggestions have been based upon somewhat indirect experimental observations, it is interesting to
note that the calculated results in Figure 14 (a) provide no evidence for Ag segregation. In the
current calculations for Ag-Al we have neglected the effect of local atomic displacements upon the
alloy free energy. Presently work is under way to investigate if such displacive effects might lead
to the type of non-monotonic composition profiles expected from experimental SAXS results.

Summary

Results of CVM and LTE calculations have been presented for the thermodynamic and structural
properties of coherent IPBs in fcc substitutional alloy systems. It is demonstrated that the
temperature dependencies of interphase energies and the widths of compositionally diffuse IPBs
can be significantly large. Results presented for Ag-Al demonstrate how, through the combined
use of quantum-mechanical total energy methods and accurate statistical-mechanical techniques,
first-principles studies of IPB properties at finite temperatures can be performed. In the future
such ab-initio approaches should prove useful for calculating IPB properties in situations where
limited experimental information is available, as is often the case when metastable phases are
involved and when the number of alloy constituents is greater than two.
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V. Vacancy Dislocation Loops in EAM Aluminum

Vacancies play an important role in determining the kinetics of precipitation of second phases in.
metals. They both enhance solute diffusion and serve as building blocks for more complex

defects, such as dislocation loops, that act as heterogeneous nucleation sites. In this work, we
. seek to determine the stability of vacancy clusters that act as sinks for single vacancies in

aluminum. We use an embedded atom method (EAM)potential to determine the energetic of

these clusters using both conjugate gradient minimization and molecular dynamics integration

techniques. The results agree surprisingly well with an earlier near-neighbor broken bond model;

both the EAM and broken-bond-model give rise to lower energies than predicted by elasticity

theory for very small clusters. The energetic provided by this study will be used in a reaction

rate theory based computational method constructed to explore precipitation mechanisms in

metal alloys.

Vacancies cluster or uncluster to minimize the free energy of a metallic system. At low

temperatures, vacancies cluster to minimize the system internal energy by reducing the number of

unsatisfied atomic bonds, and at high temperatures they uncluster to maximize the entropy of the

system. In this regard, vacancies can be considered to be similar to any minor constituent in a

material where random dispersement in the major phase is not energetically favored -- a process
of nucleation and growth of vacancy clusters occurs, within kinetic limits, as the temperature of

the system is decreased [59]. The lowest energy state is to nucleate and grow these clusters on

existing, preferentially external (and therefore, convex) surfaces. However, kinetic limits may

cause nucleation of vacancies throughout the material, which subsequently undergo coarsening,

the growth of larger clusters at the expense of smaller ones, to minimize the total system energy.

Vacancies can be viewed in two ways. The first is that they represent open volumes within a

lattice that must be bounded by surfaces with the rest of the lattice. The second is that they

represent defects within the lattice to which the lattice may conform so as to minimize the total

system energy. For isolated vacancies or for small vacancy clusters, the cost of unsatisfied bonds

is small compared to the cost of the strain energy that would be required to satis$ missing

bonds, so the vacancy energy is minimized by ordering vacancies in a roughly spherical volume,

as is commensurate with the first representation. However, as the size of the vacancy cluster

increases, the number of unsatisfied bonds that can be satisfied by conforming the lattice to the

defect increases while the strain energy of the lattice to conform to the defect decreases because

the resulting strain field becomes more diffuse. At some size, vacancy clusters can favorably
collapse to form vacancy dislocation loops that are composed of an edge dislocation coupled with

a stacking fault. If the stacking fault energy is high, as is the case in Al, the loop may undergo an

additional reaction to create a perfect unfaulted loop [60]. Irrespective of the loop character, the

effects of the open volume associated with the vacancies is secondary to the effects of the lattice

defects caused by larger vacancy clusters, and the second representation becomes more

appropriate.
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This work investigates the energetic of open versus collapsed vacancy clusters. We used the

Dynamo program developed at Sandia National Laboratories to find the relaxed energies of

lattices containing the various defects. The embedded atom method (EAM) [4] potential of

Ercolessi [61] was used as this potential was specifically fit to the experimental stacking fault

energy and surface energies of fcc Al. These energies are thought to play the most important role

in establishing the stable defect structures. The intent of the study was to provide calculated

formation energies of the vacancy clusters and a mechanistic understanding of their formation

process for the reaction-rate-theory based code developed to model precipitation in Al alloys.

Procedure

We investigated the structures obtained by various routes of vacancy additions and minimization

techniques. We first created vacancy clusters by sequentially removing the atoms having the

highest individual potential energy within an existing lattice in a system which had been relaxed

by a conjugate gradient method. We initially found significant atomic relaxations in the EAM

aluminum when using this method of void formation for very limited numbers of vacancies, and

we were interested in whether a vacancy dislocation loop would result when enough vacancies

were added. However, we generally obtained roughly spherical voids exhibiting some surface
relaxation.

We then created disk-shaped voids on a {111} plane to try to reproduce the experimentally

verified vacancy dislocation loops found on these planes. The base system was a 5760-atom fcc

aluminum structure oriented so as to make the {111} crystallographic plane parallel to the x-y

simulation plane, resulting in a 49.4 x 45.6 x 41.9 ~ periodic cell. Disk shaped voids were created

by removing atoms to eliminate completely coordination shells about a central atomina{111 )

plane --7, 13, 19,31, 37,43,55, and 61 atoms. We then used two techniques to relax the
resulting lattice -- the conjugate gradient minimization technique, and a molecular dynamics

technique. The two methods gave significantly different relaxed structures.

It was found that the open voids were stable in the systems relaxed by the conjugate gradient

method. To force the voids to collapse into vacancy dislocation loops, we applied an external

stress perpendicular to the face of the voids. The stress required to collapse the voids was

dependent on the size of the voids, and was the least for large voids and the greatest for small

voids. We then removed the stress from the resulting structures to confirm that the collapsed

structures were at least locally stable. Comparisons between the energy of the collapsed voids --
generally vacancy dislocation loops -- and the uncollapsed voids were made to show the more

stable configuration. The voids readily collapsed in the structures relaxed using the molecular
dynamics method, so no further application of pressure was necessary.
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Figure 15. Structures of systems with uncollapsed disk-shaped voids on a (111) plane. View is
ofa 6 angstrom-thick slice perpendicular to the plane of the voids.

TABLE IV: STRESS APPLIED AND SYSTEM RESPONSE DURING
CON.TUGATE GRADIENT MINIMIZATION

Number of Pressure, in order of application
Vacancies

1 kbar 10 kbar 100 kbar 20 kbar
7 None None
13 None None Restructure -
19 None None Collapse -
31 None None Unstable Collapse
37 None None Collapse -
43 None Collapse -
55 None Collapse -
61 None Collapse -
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Fimre 16. Structures of svstems with collamed and subsequently relaxed disk-shaped voids on
v a (111) plane. View is-of a 6 angstrom-thick slice perpe~dicul~r to the plane of the voids.

We performed MD simulations at nearly OK and at 300K. In order to compare the final potential
energies, we made the assumption that in a thermally active harmonic system, the increase in
potential energy resulting from thermal vibrations of the lattice is the same as the kinetic energy of
the atoms in the lattice, in accordance with the equipartition theorem. Thus, we can obtain
comparable potential energies by subtracting the kinetic energy of the systems from their potential
energies. We performed a test of this method and found that this method yielded a correction
within 3% of the actual correction obtained by comparing the potential energy of a system at 300K
to that of a system at OK. In our systems, this equates to a correction on the order of 20 eV and an
error on the order of 0.5 eV.

We first used the final collapsed structures obtained from the energy relaxation simulations as
starting structures for MD simulations at 300K. We will refer to this series of simulations as series
B. At the conclusion of 2.0 ps simulations, we found that the voids did not reopen, but the strain
field became more diffuse.

After finding that the collapsed voids were stable in the dynamic lattice, we then sought to
determine if the open voids would spontaneously collapse in a dynamic lattice. We performed two
series of simulations. First, we performed MD simulations at 300K using the relaxed un-collapsed
vacancy clusters as the starting structures, which we will refer to as series C. Then we performed
a series of constant energy MD simulations initially at OK using the unrelaxed un-collapsed voids
as the starting structures, which we will refer to as series D. In the latter case, an initial “kick” is
given to the system as it relaxes to a local minimum energy state similar to that found by the
conjugate gradient method, raising the temperature slightly and enabling further relaxations to
occur. In almost all cases, the systems relaxed to collapsed voids, as shown in Figure 17 for
series D.

.
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Figure 17. Structures of systems with relaxed disk-shaped voids on a (1 11) plane using mole-
cular dynamics. View is-of a 6 angstrom-thick slice p&pendicular to the pl&e of the v~ids.

The comparison of system energies for the collapsed and uncollapsed voids relative to that of a
collection of individual relaxed vacancies (the cluster binding energy) is shown in Figure 18. Note
that in all cases, the energies of the systems with collapsed voids are lower than corresponding
systems with uncollapsed voids. We find little difference in the system energies as a result of
different relaxation methods. There is some variation in the relative energies of the different
methods for different sized vacancy clusters, mainly as a result of the scatter in the system energies
of series C (MD system at 300K). The only series that is significantly different from the rest is
series B, (MD relaxation of collapsed structure at 300K). We further investigated the cause of this
difference.

It is known that dislocation loops can be either faulted or unfaulted -- that is, the collapsed walls
may either meet at a stacking fault, or the dislocation loop may relax so as to eliminate this stacking
fault via emission of a Shockley partial. Because the stacking fault energy in Al is quite high (150

mJ/m2 [62]), we thought that the thermally active structures in series B could possibly have
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Figure 18: Comparison of vacancy cluster binding energies for uncollapsed disc-shaped voids
and collapsed and relaxed voids.

undergone this reaction. Observation of the defect structures indicated that this was not the case
and elasticity theory predictions support this result. The elastic criterion for the unfaulting reaction
to occur is [60]

where y is the stacking fault energy (97 mJ/m2 for the Al EAM potential used), G is the shear

modulus (.332 x 1014mJ/m3 for the Al potential used), v is Poisson’s ratio (,319), a is the lattice

parameter (4.05x 10-10m), r. is the dislocation core radius (taken as 5 x 10-10 m), and r is the 10op
radius. (Note that the elastic properties predicted by the Ercolessi potential were fitted to
experimental values extrapolated to OK [60].) Using the Al properties listed in parentheses, the

dislocation loop would have to have a radius of approximately 58 x 10-10m before undergoing an

unfaulting reaction.The largest loop radius we simulated was 12x 10-10m, smaller than this elastic
criterion. It seems that the thermal activation simply allowed the defect structures to sample a
broader configuration space than did the OK systems, thus allowing the series B structures to
attain lower energies. It is also important to note that the atomistic calculations were carried out
using periodic boundary conditions rather than boundaries fixed by the far-field elastic
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displacements resulting from the presence of the loop. The proximity of image dislocation loops
may result in a change in the relative stability of the different dislocation loop structures.

Overall, the results clearly show that open disk-shaped vacancy clusters that are one atom-plane
thick are not stable in a thermally active EAM aluminum lattice, and are only metastable in an
energy-minimized static lattice. Differences in the relaxation methods result in only minor
observable differences in the resulting structures.

Finally, the internal energies of formation (energy of the system containing the defect relative to the
energy of a perfect crystal containing the same number of atoms) were calculated for both the open
and collapsed structures. The formation energies were compared to near-neighbor broken bond
formation energies of collapsed vacancy disks and elasticity theory calculations for dislocation
loops possessing a Burgers vector normal to the loop plane.The former calculations were put
forward by Davis [63] in a study of the nucleation of vacancy clusters in metals. He wrote the
formation energy of the clusters as

AE [1AF(i) = (3.0i+3.53i’’2) &-ikTln K
nv,

(V.2)

where i is the number of vacancies, AE~is the formation energy for one vacancy, and ~ /nv~is

the vacancy supersaturation ratio. Increasing the vacancy supersaturation counteracts the internal

energy, AE, necessary to break atom bonds and form the vacancy defect. Thus at a given
temperature, there exists a critical size vacancy disk which exists in metastable equilibrium with the
vacancies in the metal matrix. The elasticity calculations were taken from Davis and Hirth [59] for
a faulted loop as

(V.3)

Figure 19 shows the internal energy of formation as a function of vacancies for the open vacancy
disks, the collapsed dislocation loops, the near-neighbor broken bond model, and the elasticity
calculations. It can be seen that the EAM results are quite similar to Davis’ prediction for Al. The
EAM results support Davis’ conclusion that atomistic energies are necessary to accurately describe
dislocation loops of small dimensions.

Conclusions

We were successful in forming vacancy dislocation loops in an EAM aluminum system. We have
shown that these loops require some activation to form from a vacancy cluster, and that they
remain stable in a thermally active system. The use of different methods for relaxing the lattices
about the dislocation loops has little effect on both the final potential energy and structure of the
resulting loops. We find that all loops are faulted despite variations in energies that would suggest
that some loops are more relaxed than others, consistent with the elasticity theory based unfaulting
criterion. Finally, we find that the nearest-neighbor bond model provides estimates in rough
agreement with the potential energies of the vacancy clusters investigated using the many-body
EAM potentials here.
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APPENDIX

.

In’this appendix a listing is given of the rate-theory computer code. The code presented below is
set up to model the precipitation of Al~Sc in supersaturated A1-SCalloys. However, the code is
ready applicable to any binary alloy system for which the relevant thermochemical data are known.
The primary function of the code below is to integrate the coupled set of differential equations
given in Eq. (II. 1). In the code there exists three different numerical techniques; any of the three
can be used to integrate the differential equations, but we have found the variable-time-step, fourth-
order Rungs-Kutta to be the most robust. Many of the subroutines in the code below have been
adapted from Numerical Recipes (W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P.
Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, Cambridge University
Press, Cambridge, MA, 1992) to which the reader is referred for detailed explanations. At the end
of the section we also include a sample input file which is setup to perform a quench and age of an
Al-O. 11 at. % Sc alloy.

Listing of code

!lll!l! 1!!!1111!111111!1... . . . . . . . . . . . . . . . . . . . . . MAIN PROGRAM !!!!!!!!!!!!!!!!!!!

program rate
c
c coauthored by M. D. Asta,- S. Foiles, R. W. Hyland, Jr.,
c K. B. Lippert, C. Lane Rohrer
.
b

c**** ********************************************

c Solution of Master-Equations describing
c time-evolution of distribution of precipitates
c for a number of phases in a super-saturated
c alloy
c**** ********************************************

c
include ‘common.h’

c
call input
call iniliz
call cool

c
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE INPUT !!!!!!!!!!!!!!!!!

subroutine input
include ‘common.h’

c
namelist /inpcard/ tinit,tfin,corat, tconc,tau,nit,
$ maxtime,maxtau,tautest,imethod,
$ nph,stoich,alat,volph, icoh,eccen,
$ gamma,coh,gbe,gthick, gdiam,
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c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

$ difc,em,e2m,ibin, nans,
$ ev,difvac,evacm, difdivac,edivacm,
$ sconf,evacb,
$ dibind,
$ rhod,resol

open(unit= 10,file=’input_file’, status= ’old’)
open(unit=20,fi1e= 'output_file',status= 'unknown')

variables and units:

tinit,tfin=initial and final (quench) temperatures in K
corat=cooling rate (K/s)

tconc=total concentration of minority species (atomic cone)
conc=concentration of minority species monomers still

in solution

tau=time step (seconds)
nit=number of iterations
maxtime = simulation time limit to assure that changing timestep

value doesn’t overrun desired length of thermal practice (seconds)
maxtau= maximum timestep code should ever take (seconds)
tautest = output information every tautest seconds

nph=number of phases to be considered (maximum value nphas)
stoich(i)=x where stoichiometry of phase i is a_xb (a,b=

majority and minority species, respectively).
NOTE: stoich need not be an integer

alat=lattice constant of majority species (m)
volph(i)=volume per formula unit of phase i (mA-3)
eccen(i)= b/a ratio (note: eccentricity= sqrt(l - (b/a)A2))

-> b/a = 1 -> sphere
-> b/a <1 -> prolate
-> b/a >1 -> oblate

icoh(i)=O if phase i is coherent, 1 if phase i is
incoherent

gamma(i)=interphase interface energy (J/mA2) for phase i
cob(i)= coherency strain energy (J/mA3) for phase i

gbe(i)=grain boundary energy (per mA2) (zero for homogeneously
nucleating phase)

gthick = mean gb thickness (m)
gdiam=mean grain diameter (m)

rhod=dislocation density ( l/mA2)
resol=resolution of experiment (in meters):

all clusters with diameter
greater than resol are termed a ppt. for the purposes of
computing moments of the distribution

difc=impurity diffusion constant prefactor (mA2/s)
em=activation energy for impurity migration by monovacancies (eV)
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e2m =” by divacancies

*

c
c

c

c
c
c
c
c
c
c
c
c
c
c
c

c

difvac=m~novacancy diffusion constant prefactor
evacm=activation energy for monovacancy migration
difdivac=divacancy diffusion constant prefactor
edivacm=activation energy for divacancy migration
ev=vacancy formation energy (eV)
sconf = vacancy cluster configurational prefactor
evacb = mono-,di-,trivacancy binding energy

ibin = identifies binary solute element for choosing thermo. data
ibin = 2-> Sc

dibind = binding energy of solute to form formula unit dimer

nans = Ofor initial run, 1 for restart run

read( 10,inpcard)
tfin=tfin- 1d-8
tinit=tinit+l d-8

c convert eV -> J/mole
c

em= em * 1.602d- 19 * avogadro
e2m = e2m * 1.602d- 19 * avogadro
evacm = evacm * 1.602d- 19 * avogadro
edivacm = edivacm * 1.602d- 19 * avogadro
ev = ev * 1.602d- 19 * avogadro
do 100 i=l,3

evacb(i) = evacb(i) * 1.602d- 19 * avogadro
100 continue

do 200 i=l ,nph
dibind(i) = dibind(i) * 1.602d-19 * avogadro

200 continue
c

if (nph.gt.nphas) then
write(6,*) ‘nph greater than parameter nphas’
stop

end if
write(20,inpcard)
radres=resol/2.d0

c
return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE INILIZ !!!!!!!!!!!!!!!!!

.
subroutine iniliz
include ‘common.h’

c
pi= 2.dO*asin(l .dO)

c
do 5 i = O,natom

cbrts(i) = dfloat(i)**(l .dO/3.dO)
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5 continue
do 10 i = l,nvac

delsqrt(i) = sqrt(dble(i)) - sqrt(dble(i-1))
10 continue

do 12i= l,nph
epro l(i) = sqrt(l .dO - eccen(i)*eccen(i))
epro2(i) = epro 1(i) / log( (1.dO-epro 1(i))/( 1.dO+epro 1(i)))
eobl l(i)= sqrt(eccen(i)*eccen(i) - 1.dO) .

eob12(i) = eobl 1(i) / asin( eobl 1(i)/eccen(i) )
12 continue

c
c vol=volume per mole of solid-solution phase (mA3)
c NOTE: fcc structure assumed
c
c initialize all values of cO to zero (except for value
c for monomer which is fixed by concentration)
c
c cO -> # sohte atoms in s.s. / mA3
c tconc -> total mole fraction solute
c ssconc -> mole fraction solute in s.s.
c cvac -> # vacancy clusters ( l/mA3)
c
c OR
c
c read in values of COfrom ratres file
c

if (nans.eq. 1) then
open (unit=24,file=’ratres’, form=’unformatted)

read (24) timeinit,tconc, ssconc,
$ (critmin(j),driftcut(j),j= l,nph),
$ (nat~),j=l ,nph),
$ ((cO(i,j),i=l ,nat(j)),j=l ,nph),
$ (cvac(i),i=l ,nvac),(sumcO(i), i=l,nph)

close(unit=24)
a=alat+dadc(ibin) *ssconc
vol=((a*a*a)/4. dO)*avogadro

else

40

30

$

timeinit = O,OdO
ssconc=tconc
a=alat+dadc(ibin) *ssconc
vol=((a*a*a)/4. dO)*avogadro
do 30 i=l ,nphas

nat(i) = 10
critmin(i) = 99999
driftcut(i) = 99999
sumcO(i)=O.dO
do 40 j=2,natom

cO(j,i)=O.dO
continue

cO(1,i)=tconc*avogadro/vol
continue

rt = 8.3 14dO*tinit
cvac(l) =

(3.dO * exp(-ev/rt)) * avogadro/vol
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endif
c

write(20,99)cvac( 1)
99 format(’initial cvac = ‘,d17. 10)

c
c initialize all growth and emission rates to zero
L

do 80 i=l ,nphas
do 75 j=l ,natom

grow~,i) = O.dO
emit(j,i) = O.dO

75 continue
80 continue

do 90 i=l ,nvac
growvac(i) = O.dO
ernitvac(i) = O.dO

90 continue
c
c initialize average separation between dislocations
c

rdist = sqrt( 1.dO/pi/rhod)
c

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE COOL !!!!!!!!!!!!!!!!!

subroutine cool
include ‘common.h’
real*4 tarraye(2),tarrayd(2)
real*4 etime,dtime

c
c
c
c
c
c
c
c
c

iterate over time

every tautest seconds:
-determine the maximum number of atoms (nat)
for a given phase with appreciable weight

-compute the average size
-output the data

itest = 1
taut = tautest
tempold = O.OdO
time = timeinit
nreport = 10000
deltime = time
do 10 i=l ,nit

if (time .gt. timeinit+maxtime) goto 99
call newnat
call newt
call tdcon(time,cvac)
if (abs(tempold-temp) .gt. 1d-6) then
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tempold = temp
end if
if (time .ge.timeinit+taut) then

itest = itest + 1
taut = dble(itest)*tautest
call avgsz
call out l(i)

end if
if (mod(i,nreport) .eq.O) then

deltime = time - deltime
avedt = deltime/dble(nreport)
deltime = time
write(6, *)’’i=’’,i,” time= ’’,time,” ave dtime=’’,avedt

endif
10 continue

c
99 call avgsz

call out 1(i)
return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE NEWNAT !!!!!!!!!!!!!!!!!

subroutine newnat
include ‘common.h’

data ifcall/1/
save ifcall
data nbuffer/lO/,cOlimit/l .d-l/

c . . . . .
c determine new value of nat(i) (maximum number
c of atoms in phase (i) which have appreciable
c weight
c . . . . .
c .....nbuffer is the size of the buffer region past the last “significant”
c .....cO value and cOlimit is the value that determines what is significant
c . . . . .

do 10j=l,nph
if (ifcall.eq. 1) then

nstart = 1
else

nstart = nat(j) - nbuffer
endif
nattmp = nat(j) - nbuffer
do 20 i=nstart,natfi)

20
15

if (cO(i,j).gt.cOlifiit/i) then
nattmp=i

else
goto 15

end if
continue
if (ifcall.eq. 1) then
natfi ) = nattmp + nbuffer
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c . . . . .
c .....clean up any “noise” that maybe at the tail of the initial data
c . . . . .

. do 17 i = nattmp+l ,natom
cO(i,j) = O.OdO

17 continue
else

nat(j) = min(max(natfi),nattmp+nbuffer),natom)
do 25 i = nattmp+l,nat(j)

cO(i,j) = O.OdO
25 continue

endif
c . . . . .

if (nat(j).ge.natom) then
write(20,*) “warning!!! nat has reached natom for j=”,j
write(6,*) “warning!!! nat has reached natom for j=”,j
stop

endif
10 continue

ifcall = O
c print *,’nat:’,(natQ),j= l,nphas)

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE NEWC . . . . . . . . . . . . . . . . .IIltlllltllllllll

subroutine newt
c
c**** ***********************************************

c integration of master equations for one time
c step using adaptive fourth-order Runge-Kutta method
c
c Found in Numerical Recipes, chapter 16.
c**** ***********************************************

c for solute and vacancies:
c
c
c
c
c
c
c
c
c
c
c

cO(i,j)=concentration (per mA3) of particles of size
i for phase j

eps = error tolerance in rk routine
scalefactor(natom* nphas) = weights for error tolerance in rk routine

set so that error/new value .lt. eps
htry = step size in time to try and take
hdid = step size actually taken
hnext = step size suggested by rk routine for next time around

include ‘common.h’
integer phaseindex
dimension dcOdt(natph+nvac)
dimension scalefactor(natph+nvac)
dimension cOtmp(natph+nvac)
data dcOdt/nvac*O.dO,natph* O.dO/
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data scalefactor/nvac* O.dO,natph*O.dO/
data eps/1 d-l/
save hnext
external derivs
parameter (tiny=O. ldO)
parameter (tinynot= 1.d7)
do 10 i=l ,nvac
cOtmp(i)=cvac(i)

10 continue
do 15 j=l,nph
phaseindex=natom*Q- l)+nvac
do 17 i=l,nat(j)
cOtmp(i+phaseindex) =cO(i,j)

17 continue
15 continue

call derivs(time,cOtmp,dcOdt)
c
c Setup initial h step
c

if (time .eq. timeinit) then
htry = tau

else
htry = hnext

end if
c
c Setup scaling factors and temp arrays for rkqs.
c

do 20 i=l ,nvac
sctest = abs(htry*dcOdt(i))
if (sctest le. 1.d4) then

scalefactor(i) = tinynot
else

scalefactor(i) = sctest
endif

20 continue
ntotal = nvac
do 22 j=l,nph

phaseindex=natom* Q-1)+nvac
ntotal = ntotal + nat(j)
do 23 k=l,nat(j)

sctest = abs(htry*dcOdt(k+phaseindex))
if (sctest le. 1.d4) then

scalefactor(k+phaseindex) = tinynot
else

scalefactor(k+phaseindex) = sctest
endif

23 continue
22 continue

c
goto (1 100, 1200,1300) imethod
stop ‘imethod

1100 continue
c
c Do one adaptive rk step
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.

.

.

.

c
call rkqs(cOtmp, dcOdt, natph+nvac, time,
$ htry, eps, scalefactor,
$ hdid, hnext, derivs)
goto 1999

1200 continue
c
c take Bulirsch-Steer step
c

call bsstep(cOtmp, dcOdt, ntotal, time,
$ htry, eps, scalefactor,
$ hdid, hnext, derivs)
goto 1999

1300 continue
c . . . . .
c .....take a simple finite difference step
c . . . . .

call findif(cOtmp,dcOdt,ntotal,time,htry,derivs)
hdid = htry
hnext = htry
goto 1999

c . . . . .
c .....end of “case” for different imethod
u.. . . .

1999continue
do 2220 i=l ,nvac

cvac(i) = cOtmp(i)
2220 continue

do 2000 j=l ,nphas
phaseindex=natom* (j-1 )+nvac
do 1800 i=l,nat~)

cO(i,j) = cOtmp(i+phaseindex)
1800 continue
2000 continue

c

c
c
c

c

c

c

c

c

c

c

time = time+ hdid
tau = hdid

call to rcalc to determine new concentration,vol,
precipconc, and voltrans
voltrans=fraction of 1 mA3 occupied by precipitates of

all phases

call rcalc(cOtmp)

chk: checks how well the Runge-Kutta method conserves
the number of minority atoms

chk = (tconc*avogadro/vol)
iflag = O
do 70 i=l ,nph

c don’t double count monomer solute in ss calculation
if (iflag .eq. O) then

chk = chk - cO(1,i)
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iflag = 1
endif
istop = min(driftcut(i), nat(i))
do 68 j=2,istop

chk = chk - cO(j,i)*dble(j)
68 continue

chk=chk-precipconc(i)
70 continue

chk=chk*vol/avogadro
c

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE TDCON . . . . . . . . . . . . . . . . .111!1!11!1111!1!1

c
c
c
c

c

c

c

subroutine tdcon(tdtime,tdcvac)
include ‘common.h’
dimension tdcvac(nvac)

calculate temperature given the time after quench assuming
exponential cooling with cooling rate given by _corat_

temp=tfin+(tinit-tfin) *exp(-corat*(tdtime-timeinit)/(tinit-tfin))
rt=8.314dO*temp

if (nvac .ge. 2) then
dcon = difc*(exp(-em/rt) *tdcvac(l)+

$ exp(-e2m/rt)*tdcvac(2)) *(vol/avogadro)/3.
else

dcon = difc*exp(-em/rt) *tdcvac(l)*(vol/avogadro)/3.
endif

cveq = 3.dO*exp(-evh-t)*avogadro/vol
dvac=difvac*dexp(-evacrn/rt)
ddivac=difdivac* dexp(-edivacmht)

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE AVGSZ !!!!!!!!!!!!!!!!!

subroutine avgsz
include ‘common.h’

c
c avsz(i)=average size of precipitates of phase i (m)
c sumcO(i)=density of clusters greater than critical size
b

dimension rdrs(3)
rdrs( 1) = radres
rdrs(2) = 0.75dO*radres
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rdrs(3) = 0.50dO*radres
do 10 i=l,nph

tmpl=O.dO
tmp2=0.d0
tmp3=0.dO
tot=O.dO
avsztot(i)=O.dO
do 20 j=2,nat(i)

tot=tot+cOQ,i)
avsztot(i)=avsztot(i)+rad(j,i)*cO(j,i)
if (jOge.critmin(i)) tmp3=tmp3+cO(j,i)

20 continue
sumcO(i)=tmp3
if (tot. ne.O.dO) avsztot(i)=avsztot(i)/tot
do 30 k=l,3

do 25 j=2,nat(i)
if (rad(j ,i).ge.rdrs(k)) then

tmpl=tmp l+cOQ,i)
tmp2=tmp2+radQ ,i)*cO(j,i)

endif
25 continue

totcO(i,k)=tmpl
if (tmp 1.ne.O.dO) then

avsz(i,k)=tmp2/tmp 1
else

avsz(i,k)=O.dO
endif

30 continue
10 continue

c
return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE OUT1 . . . . . . . . . . . . . . . . .Illltlllll!llllll

c

c

c

.

subroutine out 1(itn)
include ‘common.h’

output formatted date to screen and file 5

write(20,5) time, itn,temp,tau
write(20,55) ssconc,dcon,(ceqbulk(i),i= 1,nph)
write(20,555) cvac(l),cvac( 1)-cveq,cveq
write(20,5555)chk

5 format(’time=’ ,d12.6,’ # timesteps=’,ilO,’ T=’,f10.3,
“ tau=’,d12.6)

55 format(’ssconc= ‘,d17. 10,’ dcon= ‘,d17. 10,’ ceqbulk= ‘,2d17. 10)
555 format(’cvac= ‘,d17.10,’ cvac-cveq= ‘,d17.10,’ cveq= ‘,d17.10)

. 5555 format(’chk= ‘,d17.10)
write(20,*)’solute in precipitates (past size) ‘,

$ (driftcut(i),i= l,nph)
write(20,6) (precipconc(i),i=l ,nph)
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6 format(4(lx,d15 .8),/,4( lx,d15.8))
write(20,*)’average size of phases: (observable, total)’
write(20,6) ((avsz(i,k),k=l ,3),avsztot(i),i=l ,nph)
write(20,*)’# density of precipitates: (observable, >crit)’
write(20,6) ((totcO(i,k),k=l ,3),sumcO(i),i=l ,nph)
write(20,7) (nat(i),i= 1,nph)

7 format(6(lx,i8))
8 format(5(lx,d15 .8))

do 10 i=l ,nph
write(20,*)’ phase # ‘,i
write(20,8) (cO(j,i),j=2,50,2)
write(20,8) (cO(j,i),j=60,400, 10)
write(20,8) (cO(j,i),j=500,5000,500)
write(20,8) (cO(j,i),j=5000,natom,5000)

10 continue
L

c for graphing purposes:
do 1100 i=l ,nph

write(65+i,66)i,time, ssconc* 100.dO,(totcO(i,k),k= l,3),
$ cO(critmin(i)+l ,i),critsize(i), rstar(i),avsztot(i)

1100 continue
66 format(i5,6(lx,d12 .6),i7,2(lx,d12 .6))

c
open(unit=8,file= ’ratres’,form=’unformatted’)

write(8) time, tconc,ssconc,
$ (critmin(j),driftcut( j),j=l,nph),
$ (nat(j),j=l,nph),
$ ((cO(i,j),i=l,nat@),j= l,nph),
$ (cvac(i),i=l ,nvac),(sumcO(i), i=l,nph)
close(8)

G

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE DERIVS !!!!!!!!!!!!!!!!!

2

c

subroutine derivs(t,clong, dcOdt)
include ‘common.h’
integer phaseindex
dimension clong(natph+nvac), dcOdt(natph+nvac), cvactmp(nvac)
save
data icall/O/
icall = icall + 1
do 2 i=l ,nvac
cvactmp(i)=clong(i)
continue

call rcalc(clong)
call tdcon(t,cvactmp)
call getflux
call eqconc
call growc(clong)

.

.
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c from growth and emission rates, as well as
c current values of cO, calculate
c the time derivative of CO
c note that grow terms contain monovacancy concentration
c

totcOl=-2.dO*clong(nvac+ l)*grow(l, 1)
. c

do 10 i=l .n~h

iotcol=totcol +
clong(phaseindex+2) *emit(2,i)

do 20 j=2,nat(i)-1
dcOdt(phaseindex+j) =

-clong(phaseindex+j) * (growfi,i) + emit(j,i)) +
clong(phaseindex+j - 1) * grow~- 1,i) +
clong(phaseindex+j+l) * emit(j+l ,i)

totco 1 = totco 1 +
clong(phaseindex+j) * (emit(j,i)-grow~, i))

continue

phaseinde~ = natom*(i- 1)+nvac

$

$
$
$

$
20

c .....treat j=nat(i) separately so we don’t use undefined values
c.....nothing is allowed to happen with clusters of size nat+l

dcOdt(phaseindex+nat(i)) =
$ -clong(phaseindex+nat(i)) * emit(nat(i),i) +
$ clong(phaseindex+nat(i) -1) * grow(nat(i)-1 ,i)

. totcol = totcol +
$ clong(phaseindex+nat(i)) *emit(nat(i),i)

10 continue
. c’

c set monomer rates of each phase equal to total rate of
c ~monomers gained/lost to all phases
c

do 45 i=l,nph
dcOdt(nvac+natom* (i-1)+1) = totcOl

45 continue
dcOdt(l) = -2.dO*clong(l)* growvac(l) - emitvac(l)

return
end

Cll!lll llllllllltllllll. . . . . . . . . . . . . . . . . . . . . . SUBROUTINE RKQS . . . . . . . . . . . . . . . . .IItfllllltlllllll

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,
$ hdid,hnext,derivs)

c
include ‘common.h’
integer phaseindex

. dimension dydx(n),y(n),yscal(n),yerr(nvac+natph),
‘ytemp(nvac+natph),yjunk(nvac+natph)
EXTERNAL derivs

. PARAMETER (NMAX=natph+nvac)
CU USES derivs,rkck

PARAMETER (SAFETY=0.9d0,PGROW=-.2d0,PSHRNK=-.25d0,ERRCON=l .89d-4)
c
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h=htry
if (h .gt. maxtau) h = maxtau

c debugging
c write( 18,*) h,’ (y, dy/dt, ynew, err, err/scale)’
1 call rkck(y,dydx,n,x, h,ytemp,yerr,derivs)

errmax=O.dO
do 11 j=l,nph

phaseindex=natom*~- 1)+nvac
do 11 i=l ,nat(j)

yjunk(i+phaseindex) =
$ yerr(i+phaseindex)/y scal(i+phaseindex)

errmax=max(errmax, abs(yjunk(i+phaseindex)))
11 continue

do 12 i=l ,nvac
yjunk(i) = yerr(i)/yscal(i)
errmax=max(errmax, abs(yjunk(i)))

12 continue
errmax=errmaxfeps
if(errmax.gt. 1.dO)then

sf = SAFETY* (errmax* *PSHRNK)
if ( sf .lt. O.ldO) then

h = h*O. ldO
else

h = h*sf
end if
xnew=x+h
if(xnew.eq.x)pause ‘stepsize underflow in rkqs’
goto 1

else
if(errmax .gt. ERRCON)then

hnext=SAFETY*h* (errrnax**PGROW)
else

hnext=5.dO*h
endif
hdid=h
do 121 i = l,nvac

y(i)=ytemp(i)
121 continue

do 122j = l,nph
phaseindex=natom* (j-1 )+nvac
do 123 i = l,nat(’j)

y(phaseindex+i) = ytemp(phaseindex+i)
123 continue
122 continue

return
endif
END

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE BSSTEP !!!!!!!!!!!!!!!!!

subroutine bsstep(y,dydx,nv, x,htry,eps,
‘yscal,hdid,hnext, derivs)
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.

.

include ‘common.h’
integer nv,nmax,kmaxx,imax, phaseindex
rea1*8 eps,hdid,hnext,htry, x,dydx(nv),y(nv), yscal(nv),

‘safe 1,safe2,redmax, redmin,tiny,scalmx
parameter (nmax=natph+nvac,kmaxx=8,imax=kmaxx+l ,safel=.25d0,
‘safe2=.7d0,redmax= 1.d-5,redmin=.7d0,tiny= 1.d-30,scalmx=. 1dO)
integer i,iq,k,kk,km,kmax,kopt,nseq(imax)
real*8 eps l,epsold,errmax, fact, h,red,scale,work, wrkmin,

‘xest xnew,a(imax),alf(kmaxx, kmaxx),err(kmaxx),
‘yerr{nmax),ysav(nmax), yseq(nmax)
logical first,reduct
save a,alf,epsold,first, kmax,kopt,nseq, xnew

external derivs
data first/.true./,epsoll/-l .dO/
data nseq/2,4,6,8,10,12,14,16,18/

if(eps.ne.epsold)then
hnext=-1 .d29
xnew=- 1.d29
eps l=safe 1*eps
a(l)=nseq(l)+l
do 11 k= 1,kmaxx

a(k+ 1)=a(k)+nseq(k+ 1)
11 continue

do 13 iq=2,kmaxx.
do 12 k=l,iq-1
alf(k,iq)=eps 1**((a(k+l)-a(iq+ l))/

A ((a(iq+l)-a(l)+ l.dO)*(2*k+l)))
. 12 continue

13 continue
epsold=eps
do 14 kopt=2,kmaxx- 1

if(a(kopt+l).gt. a(kopt)*alf(kopt- 1,kopt))goto 1
14 continue
1 kmax=kopt

endif
h=htry
do 15 j=l,nph
phaseindex=natom*@ l)+nvac
do 15 i=l ,nat(j)

ysav(i+phaseindex)=y (i+phaseindex)
15 continue

do 150 i=l ,nvac
ysav(i)=y(i)

150 continue
if(h.ne.hnext.or. x.ne.xnew)then
first= .true.
kopt=kmax

endif
reduct=.false.

2 do 17 k=l ,kmax
xnew=x+h
if(xnew.eq.x)pause ‘step size underflow in bsstep’
call mmid(ysav,dydx, nv,x,h,nseq(k),y seq,derivs)

xest=(hhseq(k)) **2
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16

A

160

call pzextr(k,xest,y seq,y,yerr,nv)
if(k.ne. 1)then
errrnax=tiny
do 16 i=l ,nvac
errmax=max(errmax, abs(yerr(i)/yscal(i)))
continue

do 160j=l,nph
phaseindex=natom* (j- 1)+nvac
do 160 i=l,nat(j)

if(dabs(yscal(i+phaseindex)).ge. 1.d- 12) then
errmax=max(errmax, abs(yerr(i+phaseindex)/
yscal(i+phaseindex)))
end if

continue
errmax=errmaxleps
km=k- 1
err(km)=(errmax/safe 1)**( 1.dO/(2.dO*km+l .dO))

end if
if(k.ne. 1.and.(k.ge.kept- 1.or.first))then
if(errmax.lt. 1.dO)goto 4
if(k.eq.kmax.or. k.eq.kopt+ 1)then
red=safe2/err(km)
goto 3

else if(k.eq.kopt)then
if(alf(kopt- 1,kopt).lt.err(km))then

red= 1.dO/em(km)
goto 3

endif
else if(kopt.eq.kmax) then

if(alf(km,kmax- 1).lt.err(km))then
red=alf(km,kmax- 1)*safe2/err(km)
goto 3

end if
else if(alf(km,kopt) .lt.em(km))then

red=alf(km,kopt- 1)/err(km)
goto 3

end if
end if

17 continue
3 red=min(red,redmin)

red=max(red,redmax)
h=h*red
reduct=.true.
goto 2

4 continue
hdid=h
first= .false.
wrkmin= 1.d35
do 18 kk=l,km
fact=max(err(kk), scahnx)
work=fact*a(kk+ 1)
if (work.lt. wrkmin)then
scale=fact
wrkmin=work
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.

kopt=kk+l
endif

18 continue
hnext=hhcale
if(kopt.ge.k.and. kopt.ne.kmax.and.. not.reduct)then
fact=max(scale/alf(kopt- 1,kopt),scalmx)
if(a(kopt+ 1)*fact.le.wrkmin) then
hnext=h/fact
kopt=kopt+l

endif
endif
return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE FINDIF !!!!!!!!!!!!!!!!!

subroutine findif(y,dydx,n, x,h,derivs)
include ‘common.h’
integer phaseindex
dimension y(n),dydx(n)

c .....assume that derivs was called before the invocation here
do 10 i = l,nvac

y(i) = y(i)+ h*dydx(i)
10 continue

do 20 j = 1,nph
phaseindex = natom*(j- l)*nvac
do 30 i = l,natfi)

y(i+phaseindex) = y(i+phaseindex) + h*dydx(i+phaseindex)
30 continue
20 continue

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE RCALC !!!!!!!!!!!!!!!!!

subroutine rcalc(rcO)
include ‘common.h’
integer which
parameter (ntrial=lOO,tolx= l.0d-12,tolf=l .Od-12)
dimension x(2)

c

integer phaseindex
dimension rcO(natph+nvac)

c

c

c

c
c

c

c

precipconc(i)=total number of minority species in
ppts. of phase i in a volume of
1 mA3

tcohpconc=total concentration of *atoms* in coherent
precipitates

volincp=volume occupied by incoherent ppts.

61



c

tcohpconc=O.dO
volincp=O.dO
SS= O.dO
iflag = O
do 50 i=l ,nph

phaseindex=natom* (i-1 )+nvac
precipconc(i)=O.dO

c don’t double count monomer solute in ss calculation
if (iflag .eq. O) then

ss = ss + rcO(l+phaseindex)
iflag = 1

endif
c particles of size < r* + kT considered part of the solid solution

if (driftcut(i) .ge. nat(i)) then
do 55 j=2,nat(i)

ss = ss + rcO(j+phaseindex) *dble~)
55 continue

else
do 56 j=2,driftcut(i)

ss = ss + rcO(j+phaseindex) *dble(j)
56 continue

do 60 j=driftcut(i)+l ,nat(i)
precipconc(i)=precipconc(i)+

rcO(j+phaseindex) *dble(j)
60’ continue

endif
if (icoh(i).eq. 1) then

volincp=volincp+precipconc(i)*volph(i)
else

tcohpconc=tcohpconc+precipconc(i)*(stoich(i)+ 1.dO)
endif

50 continue
tvcohp = tcohpconc
tvincp = volincp
sdadc = ss*dadc(ibin)

c
c solve numerically for ssconc, using constrained
c Newton-Raphson
c
c this part is necessitated because ssconc is
c a function of slat which is in turn a function
c of ssconc
c
c vol=volume per mole of solid-solution phase (mA3)
c NOTE: fcc structure assumed
c

x(1) = slat
which = 4
call mnewt(ntrial,x,n,tolx,tolf,nphas,natom,which)
alatss = x(1)
a4 = (alatss*alatss* alatss/4.dO)
ssconc = ss * a4 I

$ (1 .dO - tvincp - (a4 * tvcohp))
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c

c

c

c

c

c

c

c

c

c

c

c

c

vol= a4*avogadro

volph(i)=volume per formula unit of phase i (mA3) from input
omega(i) =volume per formula unit of coherently strained

phase i (mA3) (volume taken from matrix vol/atom)

if phase is coherent, surface area assumed to be that
of replaced solid solution, if incoherent surface area
is that of transformed second phasec

rad(j,i)= ‘a’axis of ellipsoidal cluster of phase i containing
j minority atoms (and j*stoich majority atoms) (unit=m)

note that if eccen(i)= 1, ‘a’axis reduces to radius of a sphere

tmp2=l .dO/3.dO
do 10 i=l ,nph

if (icoh(i).eq.0) then
omega(i)= a4 * (stoich(i)+l .dO)
tmp 1=3.dO*omega(i)/(4 .dO*pi*eccen(i) *eccen(i))
tmpl = tmpl **tmp2
jj = mod(nat(i)+l ,4)
do21 j=l,jj

rad(j,i)=tmpl *cbrtsQ)
21 continue

>“
do211 j=jj+l,nat(i)+l,4

rad(j,i)=tmpl *cbrts@
rad(j+l ,i)=tmp 1*cbrts(j+l)
rad(j+2,i)=tmp 1*cbrts(j+2)
rad(j+3,i)=tmp 1*cbrts(j+3)

211 continue
elseif (icoh(i).eq. 1) then

tmp 1=3.dO*volph(i)/(4 .dO*pi*eccen(i) *eccen(i))
tmp 1 = tmpl **tmp2
do 20 j=l,nat(i)+l

rad(j,i)=tmpl *cbrts(j)
20 continue

else
write(6,*)’coherency of ppt phase ‘,i,’ is unspecified

stop
endif

c calculate areas and volumes for specified shapes from rad
c sphere

if (dabs(eccen(i)- 1.dO).lt. 1.d- 10) then
do 35 j=l,nat(i)+l

a = rad(j,i)
area(j,i) = 4.dO * pi * (a*a)
interfarea(j,i) = pi * (a*a)
volume~,i) = 4.dO*pi*a*a*a*eccen(i) *eccen(i)/3.dO

35 continue
c prolate

elseif (eccen(i) .lt. 1.dO) then
do 36 j=l,nat(i)+l

a = rad(j,i)
b = a*eccen(i)
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area(j,i) = 2.dO*pi *
$ (b*b + a*b*asin(eprol(i)) / eprol(i))

c note that a gb ppt would not form with this shape
interfareafi ,i) = O.OdO
volume~,i) = 4.dO*pi*a*a*a*eccen(i) *eccen(i)/3.dO

36 continue
c oblate

elseif (eccen(i) .gt. 1.dO) then
do 37 j=l ,nat(i)+l

a = rad(j,i)
b = a*eccen(i)
area~, i) = 2.dO*pi*(b*b) +

$ (pi*a*b / eobl l(i)) *
$ Iog((eccen(i)+eobll (i))/(eccen(i)-eobll (i)))

interfarea~,i) = pi * (b*b)
volume(j,i) = 4.dO*pi*a*a*a*eccen(i) *eccen(i)/3.dO

37 continue
endif

c
do 40 j=2,nat(i)+l

area2Q,i) = area(j,i) - area(j-1 ,i)
vo12(j,i) = volumefi,i) - volumefi-l,i)
interfarea2(j,i) = interfarea(j,i) - interfarea(j-1 ,i)

40 continue
c
10 continue

c
c set area available for attachment (vacflarea) for vacancy clusters assuming:
c 1) vacancy radius = atomic radius = rat,
c 2) vacancy clusters are disks on (111) planes with volume of i vacancies
c

vat = vol/avogadro
rat = (3.dO*vat/4.dO/pi) **tmp2
rtmp = vat i (2.dO*pi) / rat
do 70 i=l ,nvac

rvac(i) = sqrt(dble(i)*rtmp)
vacflarea(i) = 2.dO*pi*rvac(i) *(2. OdO*rat)

70 continue
c

return
end

Cllllll !llllllllllllllt. . . . . . . . . . . . . . . . . . . . . .

subroutine ~etflux

SUBROUTINE GETFLUX !!!!!!!!!!!!!!!!!

include ‘co-mmon.h’
c
c prolate and oblate geometric factors are calculated in iniliz

.

L

fourpi = 4.dO*pi
do 10 i=l,nph

c prolate, ellipsoid

.
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if (eccen(i) .lt. 1.OdO)then
do 20 j=l ,nat(i)

a = rad(j,i)f
flux~,i) = fourpi * (-2.dO*a) * epro2(i)

20 continue
c oblate ellipsoid

. elseif (eccen(i) .gt. 1.OdO)then
do 30j=l,nat(i)

a = rad(j ,i)
b = a“eccen(i)
flux(j,i) = fourpi * b * eob12(i)

30 continue
c sphere

elseif (dabs(eccen(i)- 1.dO).lt. 1.d- 10) then
do 40 j=l,nat(i)

flux(j,i) = fourpi * rad(j,i)
40 continue

endif
10 continue

return
end

.

*

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE EQCONC !!!!!!!!!!!!!!!!!

subroutine eqconc
include ‘common.h’
integer which
parameter (ntrial=100,tolx=l ,Od-12,tolf=l .Od-12)
dimension x(2)
save
data temporig/O.dO/,ssold/O.dO/,iext/O/

c
rt = 8.3 14dO*temp
voloverav = vol/avogadro
avovervol = avogadro/vol
avoverrt = avogadroht

c
c if temperature or ssconc has not changed significantly or
c #bins of ppts has not increased past where ceq has been calculated,
c no need to recalculate thermodynamic quantities
c

maxnat = O.dO
do 50 i=l,nph

maxnat = max(maxnat,nat(i))
50, continue.

if (abs(temp-temporig) .gt. 1d-5 or.
$ abs(ssconc-ssold) .gt. 1.d-6 or.
$ maxnat .gt. iext) then

. c
c check temperature change direction for establishing r*
u

if (temp-temporig .gt. 1d-5) then
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inc = 1
elseif (abs(temp-temporig) le. 1d-5) then

inc = O
elseif (temporig-temp .gt. 1d-5) then

inc =-1
endif
temporig = temp
ssold = ssconc
iext = min(maxnat+ 1OO,natom)

c
do 100 i=l,nph

c
c calculate global equilibrium matrix concentration
c note that the ppt free energy is modified by the strain energy
c

x(1) = ssconc* 1d-5
cph = 1.dO/(stoich(i)+l .dO)
x(2) = cph
which = 1
call mnewt(ntrial,x,n,tolx,tolf,i,natom,which)
ceqbulk(i) = x(l)

c
c calculate free energies at equilibrium and current concentrations,
c derivatives of free energies at same, free energy of ppt
c

if (icoh(i) .eq. O) then
vm = omega(i)

elseif (icoh(i) .eq. 1) then
vm = volph(i)

endif
call energy(i,vm)

c
c calculate critical radius
c (assumes stoichiometric ppt phase, but this can be adjusted...)
c

gdenom = ( ghost - gppt(i) + dghost*(cph-ssconc) )
if (abs(gdenom).le. 1d-6) then

rstar(i) = 99999.d0
else

rstar(i) = (2.dO*gamma(i)* vm*avogadro*cph) / gdenom
endif

c
c accommodate single phase region
L

if (rstar(i) .gt. O.dO)then
crit = 4.dO*pi*rstar(i) *rstar(i)*rstar( i)/3 .dO/vm
if (crit .ge. 99999.dO) then

critsize(i) = 99999
idrftcut = 99999

else
critsize(i) = int(crit)

c calculate delta (x = delta/r*)
which = 3
x(l) = O.ldO

.

.
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.

call mnewt(ntrial,x,n,tolx,tolf,i,natom,which)
delta = x(l)* rstar(i)
cut = rstar(i) + delta
if (cut .ge. 99999.dO) then

idrftcut = 99999
else

idrftcut = int(4.dO*pi*cut*cut*cut/3 .dO/vm)
endif

endif
else

rstar(i) = 99999.dO
critsize(i) = 99999
idrftcut = 99999

endif
if (inc .eq. O) then

critmin(i) = min(critmin(i),critsize(i))
driftcut(i) = min(driftcut(i),idrftcut)

else
critmin(i) = critsize(i)
driftcut(i) = idrftcut

endif
c
c calculate Gibbs-Thompson capillarity corrected matrix composition for
c detailed balance calculation for emission rates
c

do 200 j=2,iext
x(1) = ssconc* 1.d-5

. x(2) = cph
which = 1
call mnewt(ntrial,x,n,tolx,tolf,i,j,which)

c Trivedi interracial composition calculation
ceq~,i) = x( l)*avovervol

c Gibbs-Thompson simplified version for detailed balance expression:
ceqgt~,i) = (ceqbulk(i)*avovervol) *

$ exp((gamma(i)*area2(j ,i))
$ * avoverrt )

200 continue
c
100 continue

endif
return
end

c

c

c

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE GROWC !!!!!!!!!!!!!!!!!

subroutine growc(gcO)
include ‘common.h’
integer phaseindex
dimension gcO(nvac+natph),deltae(nvac+natph)

grow(i,j)=capture rate of solute atom by Particle of i atoms
in phase j

.-
(sA-l)
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c emit(i,j)=emission rate of solute atom “
c growvac(i)=capture rate of monovacancy by cluster vacancy of size i
c emitvac(i)=emission “
c

rt = 8.314dO*temp
dist = slat/sqrt(2.dO)
freq = dcon*6.dO/(dist* dist)
voloverav = vol/avogadro
avovervol = avogadro/vol
avovemt = avogadroh-t

c
c solute:

do 10 i=l ,nph
phaseindex=natom* (i- 1)+nvac

~ set grain boundary site density - all sites available if gbe = O
c if gb sites become full (sdens<O), no more precipitation at gb’s
c

$

c

-c

if (dabs(gbe(i)).lt. 1.d- 10) then
sdens = 1.OdO

else
sdens = ((gthick/gdiam) *avovervol - sumcO(i)) /

(avovervol)
if (sdens .lt. O.dO) sdens = O.dO

endif

cph = 1.dO/(stoich(i)+l .dO)

c special case for growth rate of monomers, emission rate of dimers
c factor of 2 for relative monomer diffusivity
c note grow redefined as g(i) * #monomers for efficiency in derivs
c

grow( 1,i) = 2.dO*freq*(area(2, i)/area( 1,i))*sdens
emit(2,i) = grow( 1,i)*exp(-dibind(i)/rt)
grow( 1,i) = grow(l ,i) * gcO(phaseindex+ l)*voloverav

c
if (driftcut(i) Jt. nat(i)) then

c
c for pre-critical embryos through critical + kT nuclei:
c random walk attachment and detachment
c at r*, grow*gcO( 1)-emit should= O
c

do 20 j=2,driftcut(i)
grow(j,i) = freq * (area~+l,i)/area(l ,i)) *

exp( -( dgv(i)*vo12(j+ 1,i) +
; gamma(i) *area2(j+l,i) - gbe(i)*interfarea2 fi+l,i))*
$ avoverrt )

c Kelton, Greer, Thompson version - constrained equilibrium
emit~+ 1,i) = freq * (area(’j+1,i)/area( 1,i)) *

$ gcO(phaseindex+l )*voloverav
grow(j,i) = grow(j,i) * gcO(phaseindex+ l)*voloverav

20 continue

.

L

c for post-critical spherical nuclei:
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.

.

.

c deterministic flux based upon quasi-stationary diffusion field using
c Gibbs-Thompson capillarity corrected matrix concentration at the interface
c

do 30 j=driftcut(i)+l,nat(i)-1
grow(j,i) = flux(j+l ,i)*dcon*

$ (ssconc - ceq~+l,i)) /
c ~$ (ssconc - ceqgt~+l,i))

(gcO(phaseindex+ l)*voloverav - ceqgtfi+l,i))
emit(j+l ,i) = growQ,i)*ceqgt(j+l ,i)
growfi,i) = grow~,i) * ssconc * avovervol

30 continue
(,

else

c

do 35 j=2,nat(i)-1
grow~,i) = freq * (area~+l ,i)/area(l,i)) *

$ exp( -( dgv(i)*vo12(j+l ,i) +
$ gamma(i) *area2(j+l,i) - gbe(i)*interfarea2(j,i) ) *
$ avoverrt)

emit~+l, i) = freq * (area(j+l ,i)/area(l ,i)) *
$ gcO(phaseindex+l )*voloverav

grow~,i) = grow~,i) * gcO(phaseindex+ l)*voloverav
35 continue

c
endif

c
10 continue

growvac(nvac) = O.dO
c
c emission from monovacancies = loss of monovacancies to dislocations +
c loss of monovacancies to solute/vacancy pairs
c

c

disloss = (2.dO*pi*rhod/log(rdist/(2.dO*alatss))) *
$ dvac * (gcO(l)-cveq)
emitvac( 1) = disloss

return
end

c!!!!!!!!!!!!”!!!!!!!!!! SUBROUTINE RKCK . . . . . . . . . . . . . . . . .Illllllffllltllll

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)
include ‘common.h’
integer phaseindex
dimension dydx(n),y(n),yerr(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=natph+nvac)

CU USES derivs
dimension ak2(NMAX),ak3(NMAX), ak4(NMAX),ak5(NMAX), ak6(NMAX),

*ytemp(NMAX)
PARAMETER (A2=.2d0,A3=.3d0,A4= .6d0,A5=l.d0,A6= .875dO,B2l=.2dO

$ ,B31=3.dO/40.d0,

69



*B32=gmdO/40.d0, B41=.3d0,B42=-.9 d0,B43=l.2d0,B5 l=-~l.dO/54.dO,
$ B52=2.5d0,
*B53=-70.dO/2’7 .d0,B54=35.dO/27 .d0,B61= 163 1.dO/55296.dO,

$ B62=175.dO/512.dO,
*B63=5754do/13824. do,B64=44275,do/l ~0592.do,B65=253. dO/4096.do,

$ Cl=37.dO/378.d0,
*C3=250.dO/621 .do,C4=125. dO/594.do,C6=5° 12.do/177 1.dO,

$ DCl=Cl-2825.dO/27648 .d0,
*DC3=C3-18575.dO/48384 .d0,DC4=C4-13525 .dOl55296.dO,
$ DC5=-277.dO/14336 .d0,
*DC6=C6-.25dO)

c
do 110 i=l ,nvac

ytemp(i)=y(i)+B21 *h*dydx(i)
110 continue

do 115 i=l,nph
phaseindex=natom* (i-l)+nvac
do 115 j=l,nat(i)
ytemp(j+phaseindex)=y ~+phaseindex)+

A B21 *h*dydx~+phaseindex)
115 continue

call derivs(x+A2*h,y temp,ak2)
do 120 i=l ,nvac

ytemp(i)=y(i)+h*(B31 *dydx(i)+B32*ak2 (i))
120 continue

do 125 i=l ,nph
phaseindex=natom* (i- I)+nvac
do 125 j=l,nat(i)

ytemp(j+phaseindex)=y (j+phaseindex)+
A h*(B31 *dydx~+phaseindex)+B32 *ak2(j+phaseindex))

125 continue
call derivs(x+A3*h,ytemp, ak3)
do 130 i=l ,nvac
ytemp(i)=y(i)+h* (B41 *dydx(i)+B42*ak2(i)+B43 *ak3(i))

130 continue
do 135 i=l,nph
phaseindex=natom* (i- l)+nvac
do 135 j=l ,nat(i)
ytemp~+phaseindex)=y (j+phaseindex)+

A h*(B41 *dydx~+phaseindex)+ B42*ak2(j+phaseindex)+
A B43*ak3~+phaseindex))

135 continue
call derivs(x+A4*h,ytemp, ak4)
do 140 i=l ,nvac

ytemp(i)=y(i)+h* (B51 *dydx(i)+B52*ak2 (i)+B53*ak3(i)+B54 *ak4(i))
140 continue

do 145 i=l,nph
phaseindex=natom* (i- l)+nvac
do 145 j=l,nat(i)
ytemp(j+phaseindex)=y ~+phaseindex)+

A h*(B51 *dydx(j+phaseindex) +B52*ak2(j+phaseindex)+
A B53*ak3~+phaseindex)+
A B54*ak4(j+phaseindex))

145 continue
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call derivs(x+A5*h,ytemp, ak5)
do 150 i=l ,nvac

ytemp(i)=y(i)+h* (B61 *dydx(i)+B62*ak2(i)+B63 *ak3(i)+B64*ak4(i)+
*B65*ak5(i))

150 continue
do 155 i=l,nph
phaseindex=natom* (i- 1)+nvac
do 155 j=l ,nat(i)
ytemp@-phaseindex)=y Q+phaseindex)+

A h*(B61 *dydx(j+phaseindex)+B62 *ak2(j+phaseindex)+
A B63*ak3fi+phaseindex)+
A B64*ak4~+phaseindex)+
A B65*ak5~+phaseindex))

155 continue
call derivs(x+A6*h,ytemp, ak6)
do 160 i=l,nvac

yout(i)=y(i)+h*(C 1*dydx(i)+C3*ak3 (i)+C4*ak4(i)+C6*ak6(i))
160 continue

do 165 i=l,nph
phaseindex=natom* (i- l)+nvac
do 165 j=l,nat(i)
yout(j+phaseindex)=y~ +phaseindex)+

A h*(Cl *dydx(j+phaseindex)+
A C3*ak3~+phaseindex)+r
A C4*ak4(j+phaseindex)+
A C6*ak6(j+phaseindex))

165 continue
. do 170 i=l,nvac

yerr(i)=h*(DCl* dydx(i)+DC3 *ak3(i)+DC4*ak4(i) +DC5 *ak5(i)+DC6*
*ak6(i))

170 continue
do 175 i=l,nph
phaseindex=natom* (i- l)+nvac
do 175 j=l,nat(i)

yerr(j+phaseindex)=
A h*(DCl*dydx(j+phaseindex)+
A DC3*ak3Q+phaseindex)+
A DC4*ak4fi+phaseindex)+
A DC5*ak5~+phaseindex)+
A DC6*ak6~+phaseindex))

175 continue
return
END

.

.

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE MMID . . . . . . . . . . . . . . . . .Illlllltlllllllll

subroutine mmid(y,dydx,nvar, xs,htot,nstep,
‘yout,derivs)
include ‘common.h’
integer nstep,nvar,nmax,phaseindex
real*8 htot,xs,dydx(nvar),y(nvar),yout(nvar)
external derivs
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parameter(nmax=natph+nvac)
integer i,n
real*8 h,h2,swap,x,ym(nmax), yn(nmax)
h=htothstep
do 11 i=l ,nvac

ym(i)=y(i)
yn(i)=y(i)+h*dydx(i)

11 continue
do llOj=l,nph
phaseindex=natom* (j- I)+nvac
do 110 i=l,nat~)
ym(i+phaseindex)=y (i+phaseindex)
yn(i+phaseindex)=y (i+phaseindex)+

A h*dydx(i+phaseindex)
110 continue

x=xs+h
call derivs(x,yn,yout)
h2=2.*h
do 13 n=2,nstep

do 12 i=l ,nvac
swap=ym(i)+h2*yout(i)
ym(i)=yn(i)
yn(i)=swap

12 continue
do 120j=l,nph
phaseindex=natom* (j- 1)+nvac
do 120 i=l,nat(j)
swap=ym(i+phaseindex)+

A h2*yout(i+phaseindex)
ym(i+phaseindex) =yn(l+phaseindex)
yn(i+phaseindex) =swap

120 continue
x=x+h
call derivs(x,yn,yout)

13 continue
do 14 i=l ,nvac

yout(i)=0.5*(ym(i) +yn(i)+h*yout(i))
14 continue

do 140j=l,nph
phaseindex=natom*@ 1)+nvac
do 140 i=l ,nat(j)
yout(i+phaseindex) =O.5*(ym(i+phaseindex)-t-

A yn(i+phaseindex)+h”yout(i+phaseindex))
140 continue

return
end

c!!!!!!!!!!!!!!!!!!!!!! .SUBROUTINEPZEXTR !!!!!!!!!!!!!!!!!

subroutine pzextr(iest,xest,yest,yz,dy,nv)
include ‘common.h’
integer iest,nv,imax,nmax, phaseindex
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.

.

real*8 xest,dy(nv),yest(nv),yz(nv)
parameter(imax=13 ,nmax=natph+nvac)
integer j ,k 1
rea1*8 delta,f 1,f2,q,d(nmax),qco1 (nmax,imax),

‘x(imax)
save qcol,x
x(iest)=xest
do 11 j=l,nvac

dy(j)=yest(j)
yz(j)=yest(j)

fl continue
do llOj=l,nph
phaseindex=natom*~ -1)+nvac
do 110 i=l,nat(j)

dy(i+phaseindex)=yest(i+phaseindex)
yz(i+phaseindex)=yest(i+phaseindex)

110 continue
if(iest.eq. 1)then

do 12 j=l,nvac
qcol(j, l)=yest(j)

12 continue
do 120j=l,nph
phaseindex=natom* (j-1 )+nvac
do 120 i=l ,nat(j)

qcol(i+phaseindex, 1)=
A yest(i+phaseindex)

120 continue
else

do 13 j=l,nvac
d@=yest@

13 continue
do 130j=l,nph
phaseindex=natom* (j-l)+nvac
do 130 i=l,nat(j)

d(i+phaseindex)=
A yest(i+phaseindex)

130 continue
do 15 kl=l,iest-1
delta= 1./(x(iest-kl)-xest)
f l=xest*delta
f2=x(iest-kl)*deka
do 14 j=l ,nvac

q=qcol~,kl)
qcol(j,kl)=dy(j)
delta=d@-q
dy(j)=f 1*delta
d(j)=f2*delta
yz(j)=yz(j)+dyo)

14 continue
do 140j=l,nph
phaseindex=natom*(j -I)+nvac
do 140 i=l,nat@
q=qcol(i+phaseindex,k 1)
qcol(i+phaseindex,kl)=
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A dy(i+phaseindex)
delta=d(i+phaseindex)-q
dy(i+phaseindex) =fl *delta
d(i+phaseindex) =f2*delta
yz(i+phaseindex)=

A yz(i+phaseindex) +dy(i+phaseindex)
140 continue
15 continue

do 16j=l,nvac
qcol(’j,iest)=dy~)

16 continue
do 160j=l,nph
phaseindex=natom* (j-1 )+nvac
do 160 i=l ,nat(j)
qcol(i+phaseindex, iest)=

A dy(i+phaseindex)
160 continue

end if
return
end

c!!!!!!!!!!!!!!!!!!!!!! SU13ROUTINEMNEWT !!!!!!!!!!!!!!!!!

SUBROUTINE mnewt(ntrial,x,n,tolx,tolf,phn,atn,which)
include ‘common.h’
integer atn,phn,which
PARAMETER (NP=2)

CU USES lubksb,ludcmp,usrfun= ’’comtan”
dimension fjac(NP,NP),fvec(NP),p(NP),x(NP)

c
isig = O
cph = 1.dO/(1.dO+stoich(phn))

c
do 14 k= 1,ntrial

c

c

11

if (which .eq. 1] then
call comtan(x,n,NP,fvec,fjac, phn,atn,isig)
if (isig .eq. 1) return

elseif (which .eq. 3) then
call getdelt(x,n,NP,fvec,fj ac,phn)

elseif (which .eq. 4) then
call getalat(x,n,NP,fvec,fjac)

endif

errf=O.dO
do 11 i=l,n
errf=errf+dabs(fvec(i))
continue

if(errf.le.tolf) return
if (n .eq. 1) then

p(1) = -fvec(l)/fjac(l,l)
else if (n .eq. 2) then

.
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det = fjac(l,l) * fjac(2,2) - fjac(l,2) * fjac(2,1)
p(1) = (-fvec(l)*fjac(2,2) + fvec(2)*fjac(l,2) )/det
p(2) = (-fvec(2)*fjac( l,l) + fvec(l)*fjac(2, 1))/det

else
do 12 i=l,n

p(i)=-fvec(i)
12 continue

call ludcmp(fjac,n,NP, indx,d)
call lubksb(fjac,n,NP, indx,p)

endif
errx=O.dO
do 13 i=l,n
errx=errx+dabs(p(i))

cr make generic that x(i) cannot ever be negative
cr (true for all solutions)

fract 1= 1.dO
fract2= 1.dO
if (p(i) .lt.O.dO) fract2 = -x(i)/p(i)

cr assure that x(i) is never greater than concentration in second phase for
cr capillarity corrected solution concentration

if (which .eq. 1 and. p(i). gt.O.dO) then
fract2=(cph-x(i))/p(i)

endif
cr assure that x(i) is never greater than alat +or- da/de * tconc for
cr composition dependent lattice parameter

if (which .eq. 4) then
dadct = dadc(ibin) * tconc

*. if (p(i) .gt.O.dO) then
if (dadct .ge. O.dO)then

fract2=((alat+dadct)-x(i))/p(i)
else

fract2=(alat-x(i))/p(i)
endif

elseif (p(i) .lt.O.dO) then
if (dadct .ge. O.dO)then

fract2=-(x(i)-slat)/p(i)
else

fract2=-(x(i)-(alat+dadct))/p(i)
endif

endif
endif
fract=min(fractl,fract2)
x(i)=x(i)+0.99999 dO*p(i)*fract

13 continue
if ((errx.le.tolx) .and.(errf.le. 1.d6*tolf)) return

14 continue

9/

write(6,*) ‘maximum number of iterations exceeded in mnewt’
if (which .eq. 1) write(6,*) ‘common tangent problem’
if (which .eq. 2) write(6,*) ‘bessel coefficient problem’
if (which .eq. 3) write(6,*) ‘delta problem’
if (which .eq. 4) write(6,*) ‘slat problem’
stop

c
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END

Cl!llll ll!lllllllll!ll!. . . . . . . . . . . . . . . . . . . . . . SUBROUTINE ENERGY !!!!!!!!!!!!!!!!!

subroutine energy (phn,vm)
c
c calculate pertinent free energies and derivatives
c

include ‘common.h’
integer phn

c

c gppt(i)=free energy of phase (i) in units of J/mole
c ghost= free energy of binary solid solution evaluated at ssconc
c ghoste(i) = free energy of binary solid solution evaluated at ceqbulk(i)
c dghost = derivative of ghost w.r.t. composition
c dghoste(i) = derivative of ghoste(i) w.r.t. composition
c d2ghost = 2nd derivative of ghost w.r.t. composition
c
c atomic fraction solute in phase phn
c

cph= 1.dO/(stoich(phn)+l .dO)
c
c ibin = 2-> A1:SC
L

if (ibin .ea. 2) then\–––
aO = (3~47:Od0 -.02dO*temp)

$
$
$

$
$
$
$

$
$

$
$

al = (-74918 .OdO-l 1.021dO>temp)
ghost = aO*ssconc +

a 1*ssconc*( 1.OdO-ssconc) +
8.314dO*temp*
(ssconc*dlog(ssconc)+(l .OdO-ssconc)*dlog(l .OdO-ssconc))

ghoste(phn) = aO*ceqbulk(phn) +
al *ceqbulk(phn)*( 1.OdO-ceqbulk(phn)) +
8.3 14dO*temp*

(ceqbulk(phn)’dlog(ceqbulk(phn)) +
(1 .OdO-ceqbulk(phn) )*dlog( 1.OdO-ceqbulk(phn)))

dghost = 8.3 14dO*temp*
( dlog(ssconc) - dlog(l .OdO-ssconc) ) + aO+
al *( 1.OdO-2.OdO*ssconc)

dghoste(phn) = 8.3 14dO*temp*
( dlog(ceqbulk(phn)) - dlog(l .OdO-ceqbulk(phn)) ) +
aO + al *( 1.OdO-2.OdO*ceqbulk(phn))

d2ghost = 8.3 14dO*temp/(ssconc*(l .dO-ssconc)) - 2.OdO*al
c

gppt(phn)=(-3479 1.dO + 2.789 dO*temp) +
$ coh(phn)*vm*avogadro* cph
else

write(6,*)’no thermodynamic data for your solute type! !!’
stop

endif

.

.

L

c calculate delta G(volume) in J/mole
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c
dgv(phn) = ( 1.dO-cph) *

$ ( (ghoste(phn) - ceqbulk(phn)*dghoste(phn)) -.
$ (ghost - ssconc*dghost) ) +
$ cph *
~ ( (ghoste(phn) + (l.dO-ceqbulk(phn)) *dghoste(phn)) -

* (ghost + (1.dO-ssconc)*dghost) )
c
c convert to J/m**3

dgv(phn) = dgv(phn)/(vm*cph)/avogadro
c

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE COMTAN !!!!!!!!!!!!!!!!!

subroutine comtan(x,n,np,fvec,fjac,phn,atn,isig)
L

c**********************************************************

c findcommon tangentto solid solution freeenergy and
c 2ndphase free energy bysolving the2equilibrium conditions that:
c 1) them. pot. of A in fcc = them. pot. of A in 2nd phase
c 2) same for B
c - return solid solution and 2nd phase equilibrium concentration “x”
c**** ***** *************************************************

“s c

c
c
c
c
c
c
c
c
c
c
c
c
c

include ‘common.h’
integer phn,atn
dimension x(2),fvec(2),fjac(2,2)
dimension f(nphas),df(nphas),ddf(nphas)

gamma(i)=interfacial energy of phase i (J/mA2)
coh(i)=coherency strain term (J/mA3)
gbe(i)=grain boundary energy (J/mA2)
interfarea=grain boundary area
f(i)=free energy of phase (i) in units of J/mole
df(i)= derivative
ddf(i) = 2nd derivative
ffcc = free energy of binary solid solution evaluated at x(1)
ffcc2 = free energy of binary solid solution evaluated at x(2)
dffcc = derivative of ffcc w.r.t. composition
ddffcc = 2nd derivative

c atomic fraction solute in phase phn
G

cph=l .dO/(stoich(phn)+l .dO)
c

if (icoh(phn) .eq. O) then
vm = omega(phn)

elseif (icoh(phn) .eq. 1) then
vm = volph(phn)

endif
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c
c ibin = 2-> Al:Sc
c

if (ibin .eq. 2) then

$
$
$

$
$
$

$
$

c

!$

aO = (3347.OdO -.02dO*temp)
al = (-74918 .OdO-l 1.021 dO*temp)
ffcc = aO*x(l) +

al*x(l)*(l.OdO-x( l)) +
8.314dO*temp*

(x(l) *dlog(x(l))+(l .OdO-x(l))*dlog(l .OdO-x(l)))
ffcc2 = aO*x(2) +

al *x(2)*( 1.OdO-x(2)) +
8.3 14dO*temp*

(x(2) *dlog(x(2))+(l .0dO-x(2))*d10g( l.OdO-x(2)))
dffcc = 8.3 14dO*temp*

( dlog(x(l)) - dlog(l .OdO-x(l)) ) + aO +
al *(1 .0dO-2.0dO*x(l))

ddffcc = 8.3 14dO*temp/(x(l) *(l.dO-x(l))) - 2.OdO*al

f(phn)=(-3479 1.dO + 2.789 dO*temp) +
coh(phn)*vm*avogadro* cph

df(phn)= O.OdO
ddi(phn)= O.OdO

else
write(6,*)’no thermodynamic data for your solute type !!!’
stop

endif
c
c if ffcc2 < f(phn) (solid solution is more stable than 2nd phase) then
c 2nd phase cannot form
L

if (ffcc2 .lt. f(phn) ) then
isig = 1
x(l) =cph
return

endif
c
c fvec(l ) -> delta(chem. pot.)_Al = O
c fvec(2) -> delta(chem. pot.)_solute = O
c fjac(i,j) -> jacobian of above 2 eqns
c
c if 2nd phase is stoichiometric, only 1 equation and 1 unknown composition
c so make 2nd equation pin stoichiometric composition
c

if (atn .eq. natom) then
cap = O.dO

else
c cap = (gamma(phn)*area2 (atn,phn)-gbe(phn) *intetiarea2(atn,phn))
C$ *avogadro*cph

cap = (gamma(phn)*area2 (atn,phn))*avogadro* cph
endif
if (df(phn) .eq. O.OdO)then

n=l
fvec( 1) = -dffcc*(x(l)-cph) + ffcc - f(phn) - cap

*

v

‘.
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fjac(l ,1)= -ddffcc*(x(l)-cph)
else

n=2
fvec(l) = -dffcc*x(l) + ffcc + df(phn)*x(2) - f(phn) - cap
fvec(2) = dffcc*(l .OdO-x(1)) + ffcc

$ -’df(phn)*( 1~OdO-x(2))~f(phn) - cap
fjac(l,l)= -ddffcc*x(l)
fjac(l ,2)= ddf(phn)*x(2)
fjac(2,1) = ddffcc*(l.OdO-x( l))
fjac(2,2) = -ddf(phn)*(l .OdO-x(2))

endif
c

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE GETDELT !!!!!!!!!!!!!!!!!

subroutine getdelt(x,n,np,fvec,fjac,phn)
c
c get delta for n* + delta
c

include ‘common.h’
integer phn
dimension x(l),fvec(l),fjac(l ,1)

c
.. n=l

c
rt = 8.3 14dO*temp

c
fvec(l) = x(1)*x(1)*x(1) + (1.5dO*x(l)*x(l)) -

$ (3.dO*ti(avogadro* 8.dO*pi*gamma(phn) *rstar(phn)*rstar(phn)))
c

fjac(l,l) = 3.dO*x(l)*x(l) + 3.dO*x(l)
c

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE GETALAT !!!!!!!!!!!!!!!!!

subroutine getalat(x,n,np,fvec,fjac)
c
c get solid solution concentration dependent slat
L

include ‘common.h’
dimension x(l),fvec(l),fjac(l ,1)

c
* n=l

c
x34 = 0.25d0 * x(l) * x(l) * x(l)

c
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c

c

c

c

c

c

c

fvec(l) = x(1) - slat - (x34* sdadc) 1
$ (1 .dO - tvincp - (x34* tvcohp))
fvec(l) = (x(l) -alat)*( 1.dO - tvincp - (x34 * tvcohp)) -
$ (x34* sdadc)

fjac(l,l) = l.dO - (0.75d0 * x(1)*x(1) * sdadc) *
$ ((1 .dO - tvincp - (2.dO * x34 * tvcohp)) /
$ (1 .dO - tvincp - (x34* tvcohp))**2 )
fjac(l,l) = (1.dO - tvincp - (x34 * tvcohp)) -

$ (x(l)-alat)*(O.75d0 * x(1)*x(1) *tvcohp) -
$ (0.75d0 * x(1)*x(1) * sdadc)

return
end

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINELUDCMP !!!!!!!!!!!!!!!!!

SUBROUTINE Iudcmp(a,n,np,indx,d)
INTEGER n,np,indx(n),NMAX
REAL*8 d,a(np,np),TINY
PARAMETER (NMAX=500,TINY=I .Oe-20)
INTEGER i,imax,j,k
~~L*8 aamax,dum,sum,vv(NMAX)

d: ~2 i=l ,n
aamax=O.
do llj=l,n
if (abs(a(i,j)).gt. aamax) aamax=abs(a(i,j))

11 continue
if (aamax.eq.O.) pause ‘singular matrix in ludcmp’
vv(i)= 1./aamax

12 continue
do 19j=l,n

do 14 i=l,j-1
sum=a(i,j)
do 13 k=l,i-1

sum=sum-a(i,k)* a(k,j)
13 continue

a(i,j)=sum
14 continue

aamax=O.
do 16 i=j,n

sum=a(i,j)
do 15 k=l,j-1

sum=sum-a(i,k) *a(k,j)
15 continue

a(i,j)=sum
dum=vv(i)*abs(sum)
if (dum.ge.aamax) then

imax=i
aamax=dum

endif

.

--

.

--
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*

16 continue
if (j .ne.imax)then

do 17 k=l,n
dum=a(imax,k)
a(imax,k)=a(j,k)
a(j,k)=dum

17 continue
d=-d
vv(imax)=vv~)

endif
indx(j)=imax
if(a~,j).eq.O.) a~,j)=TINY
iffi.ne.n)then

dum=l ./a~,j)
do 18 i=j+l,n

a(i,j)=a(i,j)*dum
18 continue

endif
19 continue

return
END

c!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE LUBKSB !!!!!!!!!!!!!!!!!

SUBROUTINE Iubksb(a,n,np,indx,b)
INTEGER n,np,indx(n)
REAL*8 a(np,np),b(n)
INTEGER i,ii,j,ll
REAL*8 sum
ii=O
do 12 i=l,n
Il=indx(i)
sum=b(ll)
b(ll)=b(i)
if (ii.ne.O)then

do 11 j=ii,i-1
sum=sum-a(i,j)*b@

11 continue
else if (sum. ne.O.dO) then
ii=i

endif
b(i)=sum

12 continue
do 14 i=n,l,-1
sum=b(i)

. do 13 j=i+l,n
sum=sum-a(i,j)*b@

13 continue
* b(i)=sutia(i,i)

14 continue
return
END
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c!!!!!!!!!!!!!!!!!!!! COMMON FILE’common.h’ . . . . . . . . . . . . . . . . . . . .!l!l!!lll! 1111!11!11

implicit real*8 (a-h,o-z)
real*8 maxtime,maxtau

c if following parameter values are changed, change NMAX in rkqs and rkck
parameter(natom= 100000,nphas=2)
parameter(natph=natom* nphas)
parameter(nvac=l)
parameter(avogadro=6 .022 17d23)

c
integer critsize,critmin,driftcut
rea1*8 interfarea,interfarea2

c
c dadc (m/mole fraction) specified in the following order:
c Mg, Sc, Ag, Cu, Cd,...
L

dimension dadc(lO)
data dadc/0.00000000,+0.48 0d-12,0.00000000,0. OOOOOOOO,

$ 0.00000000,
$ O.Od-lO,O.Od-lO,O.Od-10,0.Od-10,0.Od-10/

c
common/nph/nph, nat(nphas)
common/inmatialat,radres,difc,em,e2m,volph(nphas),
$ ev,difvac,evacm, difdivac,edivacm,
$ sconf(3),evacb(3),
$ eccen(nphas),dibind(nphas),
$ gamma(nphas),coh(nphas), gbe(nphas),
$ rhod,stoich(nphas), gthick,gdiam,tconc, ibin,nans,
$ icoh(nphas)
commoru’inthinit, tfin,corat
commotiiniter/tau, tautest, time, timeinit,maxtime, temp,dcon,
$ dvac,ddivac,tempold,nit,imethod
cornmonhmaflmaxtau
common/volume/rad(natom+ 1,nphas),area(natom+ 1,nphas),

$ volume(natom+l ,nphas),interfarea(natom+l ,nphas),
$ omega(nphas),vol, alatss,
$ area2(natom+ 1,nphas),vo12(natom+ 1,nphas),
$ interfarea2(natom+l ,nphas)
comoticoncentratioticO(natom,nphas),ceq(natom,nphas),
$ ceqbulk(nphas), ceqgt(natom,nphas),
$ precipconc(nphas) ,sumcO(nphas),chk,
$ ssconc
cornmon/rates/grow(natom,nphas),emit(natom,nphas),
$ flux(natom,nphas),
$ growvac(nvac),emitvac(nvac),vacflarea(nvac)
common/freeenergy/ghost,ghoste(nphas) ,gppt(nphas),
$ dghost,dghoste(nphas) ,dgv(nphas),d2ghost
commotivac/cvac(nvac), cveq,rvac(nvac), rdist,chkvac
common/size/avsz(nphas,3 ),avsztot(nphas),totcO(nphas,3),
$ rstar(nphas),critsize(nphas) ,critmin(nphas),
$ driftcut(nphas),
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*

$ eobl 1(nphas),eob12(nphas),epro 1(nphas),epro2(nphas)
common/ssalat/tvincp,tvcohp,sdadc
common/trig/pi
common/cuberoots/cbrts(O :natom),delsqrt(nvac)

Sample input file

$inpcard
tinit = 923.0d0,
tfin = 598.OdO,
corat = 2000.d0,
tconc = .001 ldO,
tau = 1.d-15,
maxtau = 1.dO,
nit = 1000000,
tautest = 2.dO,
imethod = 1,
maxtime = 3600.d0,
nph= 1,
stoich(l) = 3.OdO,
alat = 4.05d-10,
volph(l) = 69.224d-30,
eccen(l) = 1.dO,
icoh(l) = 1,
gamma(1) = .075d0,
cob(l) = 1.917d+7,
gbe(l) = O.OdO,
gthick = O.dO,
gdiam = 1d-6,
difc = 3560.dO,
em= 2.3 18d0,
e2m = 999.dO,
ev = .66d0,
difvac = .13d-4,
evacm = 0.62d0,
difdivac = O.dO,
edivacm = 999.d0,
evacb = O.OdO,
sconf = 1.dO,
rhod = l.dlO,
ibin = 2,
dibind = O.129d0,
nans = o,
resol= 10.d- 10

$end
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